
1 

Purrfectly Fabulous Feline Functions 

Louise S. Hadden, Abt Associates Inc. 

ABSTRACT  

Explore the fabulous feline functions and calls available in SAS® 9.1 and later. Using CAT functions and 
CAT CALLs gives you an easier way to streamline your SAS code and facilitate concatenation of 
character strings. So, leave verbose coding, myriad functions, and the vertical bar concatenation 
operators behind! SAS® 9.2 (and beyond) enhancements will also be demonstrated. 

INTRODUCTION  

Does this snippet of code look familiar? 

  LENGTH stcounty $ 5 citystzip $ 60; 

  stcounty=TRIM(LEFT(PUT(state,Z2.)))||TRIM(LEFT(PUT(county,Z3.)));  

  citystzip=TRIM(LEFT(city))||','||TRIM(LEFT(statecode))||', 

    '||TRIM(LEFT(zip)); 

Version 9.1 introduced four new functions (CAT, CATS, CATT, and CATX) and three new CALL routines 
(CALL CATS, CALL CATT, and CALL CATX) that replace the clunky syntax shown above, and add some 
additional enhanced capability to character string concatenation. In Version 9.2, CATQ was added. We 
will explore the five (fabulous) CAT functions and three CAT CALLs and demonstrate how string 
concatenation can be accomplished more easily and efficiently using these functions and call routines. In 
addition, the differences between the CAT functions and CAT CALLs will be briefly discussed.  

Examples were run with SAS 9.2 on Windows XP, and SAS 9.2 on Windows Server (x64). Leaving 
appropriate spaces out is deliberate so that the action of the functions and CALL routines can be 
observed. Performance using the concatenation operator, CAT functions and CAT CALL routines will be 
compared on the two different platforms using an identical one million record file. 

ORIGINS OF CAT CALLS AND FUNCTIONS 

The customary syntax seen above, varx=TRIM(LEFT(vary))) || TRIM(LEFT(varz))), consists of two 
functions (TRIM and LEFT) paired with the concatenation operator ( || .) TRIM removes trailing 
blanks, while LEFT left aligns text values. LEFT does not remove leading blanks. It simply moves leading 
blanks to the end of the string, which is why you usually see LEFT used in conjunction with (and inside) 
the TRIM function for string concatenation. Over the years, SAS has enhanced the function (pardon the 
pun) of TRIM and LEFT. A newer function TRIMN also strips trailing blanks: the difference between TRIM 
and TRIMN is the end result in the case of the argument being missing. TRIM results in a single blank 
(length 1) for a missing argument while TRIMN results in a null (length 0.) This might come in handy, for 
example, when concatenating first, middle and last names, in which middle names are frequently missing.  
Another newer function, STRIP, is the equivalent of TRIMN(LEFT(varx)) but is obviously more 
convenient. STRIP removes both leading and trailing blanks. The CAT CALLS and functions build on the 
original and derivative functions to offer a complete array of concatenation options. 
All examples shown below were run on a Windows X64 server using SAS version 9.2, on one million 
records. In this case, all arguments being concatenated are character, and the second (of three) 
arguments is blank. Note that it is not necessary for all arguments to be character with the CAT CALLs 
and functions, and that arguments may be of mixed type. In addition, results of CAT functions (but not 
CAT CALLs) may be numeric. Unlike with the concatenation operator, you will not get a warning in your 
log if you use numeric arguments with the CAT CALLs and functions. 

  



2 

EXAMPLES AND RESULTS OF USING THE CONCATENATION OPERATOR AND THE CAT 
FUNCTION  

 
SAS Log: 

  35 data temp1; 

  36 set dd.sub2003asm ; 

  37 fullname=aa1a||aa1b||aa1c; 

  38 run; 

  NOTE: There were 1000000 observations read from the data set DD.SUB2003ASM.          

  NOTE: The data set WORK.TEMP1 has 1000000 observations and 7 variables.  

  NOTE: DATA statement used (Total process time): 

  real time 0.54 seconds 

  cpu time 0.54 seconds 

 
SAS list:  
 

  fullname 

  ERMA FLETCHER  

 
PROC CONTENTS output: 
 

   Variables in Creation Order  

  # Variable Type Len Label   
  1 STATE  Char 2 3. 3: ALPHA STATE CODE FROM 

      FIRST MDS RECORD IN STAY 

  2 RESIDENT Num 7 RES-INT-ID   

  3 FACILITY Num 7 FAC-INT-ID   

  4 AA1A  Char 12 AA1A-FIRST-NM   

  5 AA1B  Char 1 AA1B-MIDDLE-INTIAL   

  6 AA1C  Char 18 AA1C-LAST-NM   

  7 fullname Char 31 

 

Example 2: Using concatenation operator and trim/trimn/left functions  
 
SAS Log: 
 
  49 data temp2; 

  50 set dd.sub2003asm ; 

  51 fullname=TRIM(LEFT(aa1a))||trimn(left(aa1b))||TRIM(LEFT(aa1c)); 

  52 run; 

 

  NOTE: There were 1000000 observations read from the data set DD.SUB2003ASM.        

  NOTE: The data set WORK.TEMP2 has 1000000 observations and 7 variables.  

  NOTE: DATA statement used (Total process time): 

  real time 0.76 seconds 

  cpu time 0.76 seconds 

 
SAS list:  
 
  fullname 

  ERMAFLETCHER 

 
PROC CONTENTS output: 
 
  # Variable Type Len Label     



3 

  1 STATE  Char 2 3.3: ALPHA STATE CODE FROM FIRST MDS RECORD IN  

                              STAY 

  2 RESIDENT Num 7 RES-INT-ID     

  3 FACILITY Num 7 FAC-INT-ID     

  4 AA1A  Char 12 AA1A-FIRST-NM     

  5 AA1B  Char 1 AA1B-MIDDLE-INTIAL     

  6 AA1C  Char 18 AA1C-LAST-NM     

  7 fullname Char 31      

 
Example 3: Using the CAT function  
 
SAS Log: 
 
  63 data temp3; 

  64 set dd.sub2003asm ; 

  65 fullname=cat(aa1a,aa1b,aa1c); 

  66 run; 

  NOTE: There were 1000000 observations read from the data set DD.SUB2003ASM.        

  NOTE: The data set WORK.TEMP3 has 1000000 observations and 7 variables.  

  NOTE: DATA statement used (Total process time): 

  real time 0.68 seconds 

  cpu time 0.68 seconds 

 
SAS list:  
 
  fullname 

  ERMA FLETCHER  

 
PROC CONTENTS output: 
 
  # Variable Type Len Label  

  1 STATE  Char 2 3.3: ALPHA STATE CODE FROM FIRST MDS RECORD IN  

                              STAY 

  2 RESIDENT Num 7 RES-INT-ID  

  3 FACILITY Num 7 FAC-INT-ID  

  4 AA1A  Char 12 AA1A-FIRST-NM  

  5 AA1B  Char 1 AA1B-MIDDLE-INTIAL  

  6 AA1C  Char 18 AA1C-LAST-NM  

  7 fullname Char 200     

 
The customary syntax seen above, varx=TRIM(LEFT(vary))) || TRIM(LEFT(varz))), consists of two 
functions (TRIM and LEFT) paired with the concatenation operator ( || .) TRIM removes trailing 
blanks, while LEFT left aligns text values. LEFT does not remove leading blanks. It simply moves leading 
blanks to the end of the string, which is why you usually see LEFT used in conjunction with (and inside) 
the TRIM function for string concatenation. Over the years, SAS has enhanced the function (pardon the 
pun) of TRIM and LEFT. A newer function TRIMN also strips trailing blanks: the difference between TRIM 
and TRIMN is the end result in the case of the argument being missing. TRIM results in a single blank 
(length 1) for a missing argument while TRIMN results in a null (length 0.) This might come in handy, for 
example, when concatenating first, middle and last names, in which middle names are frequently missing.  
 
Another newer function, STRIP, is the equivalent of TRIMN(LEFT(varx)) but is obviously more 
convenient. STRIP removes both leading and trailing blanks. The CAT CALLS and functions build on the 
original and derivative functions to offer a complete array of concatenation options. 
 
All examples shown below were run on a Windows X64 server using SAS version 9.2, on one million 
records. In this case, all arguments being concatenated are character, and the second (of three) 



4 

arguments is blank. Note that it is not necessary for all arguments to be character with the CAT CALLs 
and functions, and that arguments may be of mixed type. In addition, results of CAT functions (but not 
CAT CALLs) may be numeric. Unlike with the concatenation operator, you will not get a warning in your 
log if you use numeric arguments with the CAT CALLs and functions. 
 

DIFFERENCES BETWEEN CALL ROUTINES AND FUNCTIONS  

 
The primary differences between the CAT CALLS and the corresponding functions are in syntax and 
performance with one exception. Results for the CAT CALLS MUST be initialized, and MUST be 
character, while results for CAT functions SHOULD be initialized (but don’t HAVE to be.) 

Results are equivalent for both CAT CALLS and CAT functions. CALL routines have slightly better 
performance (i.e. they run faster) than functions that result in the same product. 

The syntax differs in that in call routines, the result is incorporated into the statement, or CALL. In 
functions, the result is on the left hand side of an equal sign and the function statement. 

Example 4: Using the CATS function with a length statement  
 
SAS Log: 
  139 data temp7a; 

  140 length fullname $ 40; 

  141 set dd.sub2003asm ; 

  142 fullname=cats(aa1a,aa1b,aa1c); 

  143 run; 

  NOTE: There were 1000000 observations read from the data set DD.SUB2003ASM.    

  NOTE: The data set WORK.TEMP7A has 1000000 observations and 7 variables.  

  NOTE: DATA statement used (Total process time): 

  real time 0.53 seconds 

  cpu time 0.53 seconds 

 

SAS list:  
 
  fullname 

  ERMAFLETCHER 

 

PROC CONTENTS output: 
  # Variable Type Len Label  

  1 fullname Char 40   

  2 STATE  Char 2 3.3: ALPHA STATE CODE FROM FIRST MDS RECORD IN 

                           STAY 

  3 RESIDENT Num 7 RES-INT-ID  

  4 FACILITY Num 7 FAC-INT-ID  

  5 AA1A  Char 12 AA1A-FIRST-NM  

  6 AA1B  Char 1 AA1B-MIDDLE-INTIAL  

  7 AA1C  Char 18 AA1C-LAST-NM  

 
Example 5: Using CALL CATS (initialization required)  
 
SAS Log: 
  138 data temp8; 

  139 length fullname $ 40; 

  140 set dd.sub2003asm ; 

  141 call cats(fullname,aa1a,aa1b,aa1c); 

  142 run; 

  NOTE: There were 1000000 observations read from the data set DD.SUB2003ASM.    

  NOTE: The data set WORK.TEMP8 has 1000000 observations and 7 variables.    



5 

  NOTE: DATA statement used (Total process time): 

  real time 0.50 seconds 

  cpu time 0.50 seconds 

 
SAS list:  
 

  fullname 

  ERMAFLETCHER 

 
PROC CONTENTS output: 
  # Variable Type Len Label     

  1 fullname Char 40      

  2 STATE  Char 2 3.3: ALPHA STATE CODE FROM FIRST MDS RECORD IN  

                              STAY 

  3 RESIDENT Num 7 RES-INT-ID     

  4 FACILITY Num 7 FAC-INT-ID     

  5 AA1A  Char 12 AA1A-FIRST-NM     

  6 AA1B  Char 1 AA1B-MIDDLE-INTIAL     

  7 AA1C  Char 18 AA1C-LAST-NM     

 
In the end, anything that increases processing speed and efficiency while reducing the keystrokes 
necessary to accomplish goals is purrfectly fine with most SAS programmers! For concatenation, the 
hierarchy of efficiency is CAT CALLS at the top, CAT FUNCTIONS in the middle, and an assemblage of 
functions and the concatenation operator at the bottom. 
 

OTHER DIFFERENCES BETWEEN CALL ROUTINES AND FUNCTIONS  

 
SAS calculates a length for resulting variables created by using the concatenation operator by adding the 
lengths of the source variables, or arguments, together. This is very different from how the CAT functions 
operate. If not specified in a length statement prior to the invocation of a function (or length specified via 
some other method), the length of the result of the CAT functions defaults to 200. It is important to set the 
length of your variables that you will create from a character function to keep variable lengths, processing 
costs and storage costs reasonable. Conversely, it is also important to set the length of created variables 
long enough to accommodate the longest string created by concatenation, so that your result is not 
truncated. In the case of truncation with the CAT functions, you receive a warning in your log, but the 
variable will be created (incorrectly.) 
 

Log Snippet courtesy of Mike Zdeb: 

 

152 data test; 

153 length full1 full2 $15; 

154 input (first last) (: $15.); 

155 full1 = catx(',',last,first); 

156 full2 = trim(last) || ',' || first; 

157 datalines; 

WARNING: In a call to the CATX function, the buffer allocated for the 

result was not long enough to contain the concatenation of all the 

arguments. 

The correct result would contain 17 characters, but the actual result may 

either be truncated to 15 character(s) or be completely blank, depending on 

the calling environment. The following note indicates the left-most 

argument that caused truncation. 

NOTE: Argument 3 to function CATX at line 155 column 9 is invalid. 

RULE: ----+----1----+----2----+----3----+----4----+----5----+----6----

+----7---  

-+----8----+----9----+----0 



6 

 

160 ARMONDO D'BOUVIER 

full1= full2=D'BOUVIER,ARMON first=ARMONDO last=D'BOUVIER _ERROR_=1 _N_=3 

 

As you can see in the examples below, use of the length statement also significantly speeds up 
processing speed when you reduce the length of the variable from 200 to 40. 

EXAMPLES AND RESULTS OF THE CAT FUNCTION WITH AND WITHOUT A LENGTH 
STATEMENT  

 

Example 6: Using the CAT function 
 
SAS Log: 
 

63 data temp3; 

64 set dd.sub2003asm ; 

65 fullname=cat(aa1a,aa1b,aa1c); 

66 run; 

 

NOTE: There were 1000000 observations read from the data set DD.SUB2003ASM. 

NOTE: The data set WORK.TEMP3 has 1000000 observations and 7 variables. 

NOTE: DATA statement used (Total process time): 

real time 0.68 seconds 

cpu time 0.68 seconds 

 

SAS list:  
 

fullname 

ERMA FLETCHER  

 

PROC CONTENTS output: 
 

# Variable Type Len Label  

1 STATE  Char 2 3.3: ALPHA STATE CODE FROM FIRST MDS RECORD IN 

STAY 

2 RESIDENT Num 7 RES-INT-ID  

3 FACILITY Num 7 FAC-INT-ID  

4 AA1A  Char 12 AA1A-FIRST-NM  

5 AA1B  Char 1 AA1B-MIDDLE-INTIAL  

6 AA1C  Char 18 AA1C-LAST-NM  

7 fullname Char 200   

 

  



7 

Example 7: Using the CAT statement with a length statement  
 
SAS Log: 
 

109 data temp6; 

110 length fullname $ 40; 

111 set dd.sub2003asm ; 

112 fullname=cat(aa1a,aa1b,aa1c); 

113 run; 

 

NOTE: There were 1000000 observations read from the data set DD.SUB2003ASM. 

NOTE: The data set WORK.TEMP6 has 1000000 observations and 7 variables. 

NOTE: DATA statement used (Total process time): 

real time 0.45 seconds 

cpu time 0.45 seconds 

 

SAS list:  
 

fullname 

ERMA FLETCHER 

  

PROC CONTENTS output: 
 
# Variable Type Len Label     

1 fullname Char 40      

2 STATE  Char 2 3.3: ALPHA STATE CODE FROM FIRST MDS RECORD IN 

STAY 

3 RESIDENT Num 7 RES-INT-ID     

4 FACILITY Num 7 FAC-INT-ID     

5 AA1A  Char 12 AA1A-FIRST-NM     

6 AA1B  Char 1 AA1B-MIDDLE-INTIAL     

7 AA1C  Char 18 AA1C-LAST-NM     

 

THE CAT FUNCTIONS (CAT, CATS, CATT, CATX AND CATQ)  

CAT (AVAILABLE IN 9.1) 

The result of the CAT function is identical to simply using the concatenation operator ( || ) to string 
character literals, variables or expressions. No leading or trailing blanks are removed from character 
arguments; however, leading zeroes are removed from numeric arguments consistent with the use of the 
BEST format to convert numeric arguments. See examples 6 and 7 above.  

CATS (AVAILABLE IN 9.1) 

The CATS function removes both leading and trailing blanks before concatenating arguments. It is the 
equivalent of using the STRIP function and the concatenation operator. The end result will not contain 
any blanks between arguments, even if you specify a blank as an argument, which might (or might not) 
be what you want. A good mnemonic device is that “S” is equivalent to “STRIP”. Character arguments are 
stripped of any leading or trailing blanks before being joined. Embedded blanks within character 
arguments are preserved (for example, a first name of “Elly Mae”.) See example 4 above.  

CATT (AVAILABLE IN 9.1) 

 
The CATT function removes only trailing blanks before concatenating arguments. The end result will 
contain blanks if any arguments have LEADING or EMBEDDED blanks. A good mnemonic for this 



8 

function is “T” is equivalent to “TRAILING” or “TRUNCATE.” Trailing blanks are removed from arguments 
before they are joined. 
 

EXAMPLE AND RESULTS OF THE CATT FUNCTION 

 

Example 8: Using the CATT function with a code shortcut  
 
SAS Log: 
 

210 data temp12; 

211 length fullname $ 40; 

212 set dd.sub2003asm (rename=(aa1a=var1 aa1b=var2 aa1c=var3)) ; 

213 fullname=catt(of var1-var3); 

214 run; 

 

NOTE: There were 1000000 observations read from the data set DD.SUB2003ASM. 

NOTE: The data set WORK.TEMP12 has 1000000 observations and 7 variables. 

NOTE: DATA statement used (Total process time): 

real time 0.51 seconds 

cpu time 0.51 seconds 

  

SAS list:  
 

fullname 

ERMAFLETCHER 

 

PROC CONTENTS output: 

# Variable Type Len Label     

1 fullname Char 40      

2 STATE Char 2 3.3: ALPHA STATE CODE FROM FIRST MDS RECORD IN STAY 

3 RESIDENT Num 7 RES-INT-ID     

4 FACILITY Num 7 FAC-INT-ID     

5 var1  Char 12 AA1A-FIRST-NM     

6 var2  Char 1 AA1B-MIDDLE-INTIAL     

7 var3  Char 18 AA1C-LAST-NM     

 

CATX (AVAILABLE IN 9.1) 

 

The CATX function performs just like the CATS function, i.e. stripping 

trailing and leading blanks from arguments before joining, but it adds the 

eXtra capability of inserting the delimiter of your choice between arguments. 

This is handy if you want a space or comma (or something else) between 

arguments (such as a full name or address) but don’t want any eXtra spaces. 

While you could use another function, COMPBL, to remove excess blanks, CATX 

does it all at once. A good mnemonic for CATX is “X” is for “eXtra” – the 

CATX function “adds” a delimiter (or something extra) between arguments. 

 

  



9 

EXAMPLE AND RESULTS OF THE CATX FUNCTION  

 

Example 9: Using the CATX function  
 
SAS Log: 
 

224 data temp13; 

225 length fullname $ 40; 

226 set dd.sub2003asm ; 

227 fullname=catx(" ",aa1a,aa1b,aa1c); 

228 run; 

NOTE: There were 1000000 observations read from the data set DD.SUB2003ASM. 

NOTE: The data set WORK.TEMP13 has 1000000 observations and 7 variables. 

NOTE: DATA statement used (Total process time): 

real time 0.56 seconds 

cpu time 0.56 seconds 

 

SAS list: 
 

fullname 

ERMA FLETCHER 

 

PROC CONTENTS output: 
 

# Variable Type Len Label 

1 fullname Char 40 

2 STATE  Char 2 3.3: ALPHA STATE CODE FROM FIRST MDS RECORD IN 

STAY 

3 RESIDENT Num 7 RES-INT-ID 

4 FACILITY Num 7 FAC-INT-ID 

5 AA1A  Char 12 AA1A-FIRST-NM 

6 AA1B  Char 1 AA1B-MIDDLE-INTIAL 

7 AA1C  Char 18 AA1C-LAST-NM 

 

CATQ (AVAILABLE IN 9.2 AND BEYOND) 

 

The CATQ function is the newest member of the fabulous feline function litter. It is similar to the CATX 
function, with the added option of quotation marks around arguments in the end result. There is an array 
of modifiers that can be used with this function to finely control the result. The online documentation for 
SAS 9.2 (Language Reference: Dictionary) is a good and comprehensive discussion of the many 
modifiers available and the syntax for using these modifiers, among which are [not a comprehensive list!]: 
1 (use single quotation marks), 2 (use double quotation marks), a (add quotation marks to all arguments), 
c (use a comma as a delimiter), s (trim leading and trailing blanks from arguments), t (trim trailing blanks 
from arguments), and x (convert item arguments to hexadecimal literals if they contain nonprintable 
characters.) A good mnemonic for CATQ is “Q” is for “quotation marks”; the CATQ function has the 
capacity to add single or double quotation marks to selection portions of the result if desired using the 
many modifiers available. Remember to add some extra length for the quotation marks, or you will get an 
error if the results of the CATQ function exceed the specified length. 

 

  



10 

EXAMPLE AND RESULTS OF THE CATQ FUNCTION  

 

Example 10: Using the CATQ function  
 
SAS Log: 
 

252 data temp15; 

253 length fullname $ 50; 

254 set dd.sub2003asm ; 

255 fullname=catq('as',aa1a,aa1b,aa1c); 

256 run; 

NOTE: There were 1000000 observations read from the data set DD.SUB2003ASM. 

NOTE: The data set WORK.TEMP15 has 1000000 observations and 7 variables. 

NOTE: DATA statement used (Total process time): 

real time 0.60 seconds 

cpu time 0.60 seconds 

 

SAS list: 
 

fullname 

"ERMA" "" "FLETCHER"  

 

PROC CONTENTS output: 
 

# Variable Type Len Label  

1 fullname Char 50   

2 STATE  Char 2 3.3: ALPHA STATE CODE FROM FIRST MDS RECORD IN

 STAY 

3 RESIDENT Num 7 RES-INT-ID  

4 FACILITY Num 7 FAC-INT-ID  

5 AA1A  Char 12 AA1A-FIRST-NM  

6 AA1B  Char 1 AA1B-MIDDLE-INTIAL  

7 AA1C  Char 18 AA1C-LAST-NM  

 

 

IMPORTANT NOTE ON CALLING CATS AND VARIABLE LENGTH  

 
The result variable MUST be initialized prior to the CALL routine, and must be initialized as 
character. If the result variable is not initialized as character, SAS assumes the default (that the 
result variable is numeric) and an error occurs (a missing value is produced.) If you initialize the result 
variable to a single blank, the result will be truncated at a length of one. Therefore, as with CAT functions, 
it is a good practice to initialize by specifying the length of the resulting variable directly under the data 
statement, making sure to set the length of created variables long enough to accommodate the longest 
string (or number) created by concatenation. 
 

CALLING THE CATS  

 
CALL CATS, CALL CATT and CALL CATX all behave more or less like their corresponding functions 
described above, except that the resulting character variable is included in the CALL. For example: 

 
CALL CATS(result,item1,item2,...itemn); 

 
Items, or arguments, can be numeric instead of character; numeric arguments are converted to character 
using BESTw. Format. The result MUST be a character variable, and the length of the character variable 



11 

should be long enough to accommodate the result. As discussed above, this result variable must be 
initialized (and the appropriate length set) before invocation of the CAT CALL. 
 
For an example of CALL CATS, see Example 5 above. 
 
You can also use the short cut of (of var1-varn) in CAT CALL routines and CAT functions. For example: 
 

CALL CATT(result,of item1 - itemn);  

 
Also see example 8 above and example 11 below. 
 
It is important to note that unlike the CATX function, CALL CATX does not include a delimiter surrounding 
blank arguments. This may, or may not, be what you want. 

EXAMPLE AND RESULTS OF CALL CATT 

 
Example 11: Using CALL CATT (initialization Required) 
 
SAS Log: 
 
195 data temp11; 

196 length fullname $ 40; 

197 set dd.sub2003asm (rename=(aa1a=var1 aa1b=var2 aa1c=var3)) ; 

198 call catt(fullname,of var1-var3); 

199 run; 

NOTE: There were 1000000 observations read from the data set DD.SUB2003ASM. 

NOTE: The data set WORK.TEMP11 has 1000000 observations and 7 variables. 

NOTE: DATA statement used (Total process time): 

real time 0.48 seconds 

cpu time 0.48 seconds 

  
SAS list:  
fullname 

ERMAFLETCHER 

 
PROC CONTENTS output: 
 
# Variable Type Len Label     

1 fullname Char 40      

2 STATE  Char 2 3.3: ALPHA STATE CODE FROM FIRST MDS

 RECORD IN STAY 

3 RESIDENT Num 7 RES-INT-ID     

4 FACILITY Num 7 FAC-INT-ID     

5 var1  Char 12 AA1A-FIRST-NM     

6 var2  Char 1 AA1B-MIDDLE-INTIAL     

7 var3  Char 18 AA1C-LAST-NM  

    

  



12 

EXAMPLE AND RESULTS OF CALL CATX 

 
Example 12: Using CALL CATX (initialization required)  
 
SAS Log: 
 
238 data temp14; 

239 length fullname $ 40; 

240 set dd.sub2003asm ; 

241 call catx(" ",fullname,aa1a,aa1b,aa1c); 

242 run; 

NOTE: There were 1000000 observations read from the data set DD.SUB2003ASM. 

NOTE: The data set WORK.TEMP14 has 1000000 observations and 7 variables. 

NOTE: DATA statement used (Total process time): 

real time 0.53 seconds 

cpu time 0.53 seconds 

 
SAS list: 
fullname 
ERMA FLETCHER 
 
PROC CONTENTS output: 
 
# Variable Type Len Label  

1 fullname Char 40   

2 STATE  Char 2 3.3: ALPHA STATE CODE FROM FIRST MDS RECORD IN 

STAY 

3 RESIDENT Num 7 RES-INT-ID  

4 FACILITY Num 7 FAC-INT-ID  

5 AA1A  Char 12 AA1A-FIRST-NM  

6 AA1B  Char 1 AA1B-MIDDLE-INTIAL 

7 AA1C  Char 18 AA1C-LAST-NM  

 

SOME PRACTICAL USES  
 
In addition to the obvious utility of combining strings to create a full name or address, there are many 
possible uses of these powerful functions and call routines. A search on SAS-L or sascommunity.org will 
come up with a number of examples, a couple of which are shown below. Also highly recommended is 
Mike Zdeb’s NESUG 2009 paper, “Searching for Variable Values with CAT Functions: An Alternative to 
Arrays and Loops.” 
 

On SAS-L (courtesy of a tip from Mike Zdeb):  
 
Search for characters in numeric variables 
 
data dxplus; 

    set dx; 

    array prx(3) diag1-diag3; 

    do _n_ = 1 to 3 until (tag eq 1); 

    tag = (cat(prx(_n_)) in : ('171' '172')); 

    end; 

run; 

 
 

  



13 

CAT and FIND with repeated concatenation 
data cat_find_repeat; 

    set temp;     

    dia = (find(catx('*','*',adx,pdx,of odx:),'*250') gt 0); 

    ast = (find(catx('*','*',adx,pdx,of odx:),'*493') gt 0); 

    ami = (find(catx('*','*',adx,pdx,of odx:),'*410') gt 0); 

    brc = (find(catx('*','*',adx,pdx,of odx:),'*174') gt 0); 

    flu = (find(catx('*','*',adx,pdx,of odx:),'*487') gt 0); 

run; 

 
From Louise Hadden: Create a paragraph to print in a report (partial code) 
 
data page2_blurb; 

    length blurb blurb1 blurb2 $ 8128 sentence7a sentence7b sentence7c  

    sentence7d $ 200; 

    sentence7a="^n^n - Based on this total score, the top 10% of nursing  

    homes nationwide"; 

    sentence7b=' get 5 stars, the bottom 20% get 1 star, and the middle 70%  

    of nursing homes receive'; 

    sentence7c=' 2, 3 or 4 stars, with an equal proportion (23.33%) in each  

    category.'; 

    sentence7d=' The thresholds for this distribution are also fixed,  

    rather than being recalculated each month.'; 

    blurb2=catt(sentence6a,sentence6b,sentence6c,sentence6d,sentence6e, 

    sentence7a,sentence7b,sentence7c,sentence7d); 

    blurb=catt(blurb1,blurb2); 

    label blurb =" ";  

run; 

 
Results in: 
 

 
 

 

THE LITTER BOX (OR CATNIPPED!)  

 
Along with these powerful functions and CALL routines there are some warnings above and beyond the 
default length of 200. 

 Using mixed variable types in conjunction with _all_ in CAT functions can result in a numeric 
outcome with unexpected results. To avoid this, use a length statement for your outcome 
variable. 

 If you are searching a number of strings for a particular set of characters (as shown in above), 
and you concatenate the strings before searching without an argument separating diagnoses, 
SAS does not see a difference between 250250 and 025025 as far as the search goes. It will 
find a code 250 (or code 025) in either string. The solution is to use CATX which inserts a 
delimiter between diagnoses. 



14 

To avoid the danger of truncation of pre-initialized results, take the maximum length of all input variables 
(note – use the LENGTHC function instead of the LENGTH or LENGTHN function to get the trailing 
blanks if using CAT!) and add them together, making sure to add space for any delimiters and/or quotes 
you add with CATX, ALL CATX or CATQ. 

CONCLUSION 

Use of the fabulous feline functions and CALL routines saves time in both coding and in processing. 
While results of using the combination method, CAT functions and CAT CALL routines are all the same, 
the feline functions and CALL routines use less code and process concatenations faster. 

It is purrfectly clear that the CAT functions and CALL routines are valuable additions to the SAS® 
programmer’s toolbox. Try them out, and you’ll be become a CAT lover too! 

ACKNOWLEDGMENTS 

I owe many thanks for the invaluable assistance of Mike Zdeb, Jason Secoskey, and Ron Cody in the 
writing of this paper and my search for understanding of the fabulous feline functions (no CAT calls here!) 

All images displayed in the paper are free to download from www.disney.com. They are from the movies 
Lady and the Tramp (the famous Si and Am), the Aristocats, and Oliver and Company. 

RECOMMENDED READING 

Carpenter, Art. “Importing CSV Data to All Character Variables”. Proceedings of MWSUG 2016 
Conference, October 2016. https://www.mwsug.org/proceedings/2016/RF/MWSUG-2016-RF04.pdf 
 

Cody, Ron. 2004. SAS® Functions by Example. Cary, NC: SAS Institute Inc. 
 
Horstman, Joshua M. “Let the CAT Out of the Bag: String Concatenation in SAS® 9”. Proceedings of 
SAS Global Forum 2017, April 2017. http://support.sas.com/resources/papers/proceedings16/11666-
2016.pdf 
 
Liu, Yanhong and Bates, Justin. “Let the CAT Catch a STYLE.” Proceedings of SAS Global Forum 2014. 
http://support.sas.com/resources/papers/proceedings14/1845-2014.pdf 
 
Zdeb, Mike. “Searching for Variable Values with CAT Functions: An Alternative to Arrays and Loops.” 
Proceedings of NESUG 2009 Conference, September 2009. 
http://www.lexjansen.com/nesug/nesug09/ff/FF04.pdf 

CONTACT INFORMATION  

Your comments and questions are valued and encouraged. Contact the author at: 

Louise S. Hadden  
Abt Associates Inc. 
Louise_Hadden@abtassoc.com 
http://www.sascommunity.org/wiki/User:Ceeotter56 
  
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies. Other brand and product 
names are trademarks of their respective companies.  

  

https://www.mwsug.org/proceedings/2016/RF/MWSUG-2016-RF04.pdf
http://support.sas.com/resources/papers/proceedings16/11666-2016.pdf
http://support.sas.com/resources/papers/proceedings16/11666-2016.pdf
http://support.sas.com/resources/papers/proceedings14/1845-2014.pdf
http://www.lexjansen.com/nesug/nesug09/ff/FF04.pdf
mailto:Louise_Hadden@abtassoc.com
http://www.sascommunity.org/wiki/User:Ceeotter56
http://www.sascommunity.org/wiki/User:Ceeotter56
http://www.sascommunity.org/wiki/User:Ceeotter56


15 

Appendix A: Benchmarks on CAT functions and CAT CALLs, one million records 

Category 

CPU Time 

Windows 

Server x64 with 

multiple 

processors 

SAS 9.2 

CPU Time 

Windows XP P4 

SAS 9.2 
Length of 
Result 

Concatenation operations alone / no length 
statement 

.54sec .66sec 31 (sum of 
variable lengths) 

Concatenation operations with 
TRIM/TRIMN/LEFT functions / no length 
statement 

.76sec .88sec 31 

CAT function / no length statement .68sec 1.34sec 200 
Concatenation operations alone/length 
statement 

.51sec .70sec 40 

Concatenation operations with 
TRIM/TRIMN/LEFT functions / length statement 

.79sec .95sec 40 

CAT function / length statement .46sec .93sec 40 

CATS function / no length statement .73sec 1.38sec 200 

CATS function / length statement .53sec .78sec 40 
CALL CATS* .49sec .99sec 40 

CATT function / no length statement .71sec 1.12sec 200 

CATT function / length statement/ code shortcut .51sec .89sec 40 
CALL CATT* .48sec .92sec 40 

CALL CATT* / code shortcut .48sec .80sec 40 
CATX function / length statement / insert blank .56sec .85sec 40 

CALL CATX* / insert blank .53sec 1.01sec 40 

CATQ function / length statement .60 1.04sec 50  

*Initialization of result variable required in CAT 


