

Page 1

An Introduction to SAS® DATA Step Hash

Programming Techniques

Kirk Paul Lafler, Software Intelligence Corporation

Abstract
Beginning in Version 9, SAS software supports a DATA step programming technique known as hash that enables faster table
lookup, search, merge/join, and sort operations. Topics include introducing what a hash object is, how a has object works, the
syntax required, along with essential programming techniques to define a simple key, sort data, search memory-resident data
using a simple key, match-merge (or join) two data sets, handle and resolve collision scenarios where two distinct pieces of data
have the same hash value, as well as more complex programming techniques that use a composite key to search for multiple
values.

Introduction
One of the more exciting and relevant programming techniques available to SAS users today is the Hash object. Available as a
DATA step construct, users are able to construct relatively simple code to perform match-merge and/or join operations. The
purpose of this paper and presentation is to introduce the basics of what a hash table is and to illustrate practical applications
so SAS users everywhere can begin to take advantage of this powerful SAS Base programming feature.

Example Tables
The data used in all the examples in this paper consists of a Movies data set containing six columns: title, length, category, year,
studio, and rating. Title, category, studio, and rating are defined as character columns with length and year being defined as
numeric columns. The data stored in the Movies data set appears below.

The second data set used in the examples is the ACTORS data set. It contains three columns: title, actor_leading, and
actor_supporting, all of which are defined as character columns, and is illustrated below.

An Introduction to SAS
®
 DATA Step Hash Programming Techniques, continued OhioSUG 2019

Page 2

What is a Hash Object?
A hash object is a data structure that contains an array of items that are used to map identifying values, known as keys (e.g.,
employee IDs), to their associated values (e.g., employee names or employee addresses). As implemented, it is designed as a
DATA step construct and is not available to any SAS PROCedures. The behavior of a hash object is similar to that of a SAS array
in that the columns comprising it can be saved to a SAS table, but at the end of the DATA step the hash object and all its
contents disappear.

How Does a Hash Object Work?
A hash object permits table lookup operations to be performed considerably faster than other available methods found in the
SAS system. Unlike a DATA step merge or PROC SQL join where the SAS system repeatedly accesses the contents of a table
stored on disk to perform table lookup operations, a hash object reads the contents of a data set into memory once allowing
the SAS system to repeatedly access it, as necessary. Since memory-based operations are typically faster than their disk-based
counterparts, users generally experience faster and more efficient table lookup operations. The following diagram illustrates
the process of performing a table lookup using the Movie Title (i.e., key) in the MOVIES data set matched against the Movie
Title (i.e., key) in the ACTORS data set to return the ACTOR_LEADING and ACTOR_SUPPORTING information.

Figure 1. Table Lookup Operation with Simple Key

Although one or more hash tables may be constructed in a single DATA step that reads data into memory, users may
experience insufficient memory conditions preventing larger tables from being successfully processed. To alleviate this kind of
issue, users may want to load the smaller tables as hash tables and continue to sequentially process larger data sets containing
lookup keys.

Hash Object Syntax
Users with DATA step programming experience will find the hash object syntax relatively straight forward to learn and use.
Available in all operating systems running SAS 9 or greater, the hash object is called using methods. The syntax for calling a
method involves specifying the name of the user-assigned hash table, a dot (.), the desired method (e.g., operation) by name,
and finally the specification for the method enclosed in parentheses. The following example illustrates the basic syntax for
calling a method to define a key.

HashTitles.DefineKey (‘Title’);

where:

HashTitles is the name of the hash table, DefineKey is the name of the called method, and ‘Title’ is the specification being
passed to the method.

Hash Object Methods
The author has identified twenty six (26) known methods which are alphabetically displayed, along with their description, in the
following table.

MOVIES Data Set ACTORS Data Set

TITLE

TITLE

ACTOR_LEADING

ACTOR_SUPPORTING

Brave Heart Brave Heart Mel Gibson Sophie Marceau

. . . Christmas Vacation Chevy Chase Beverly D’Angelo

Christmas Vacation Coming to America Eddie Murphy Arsenio Hall

Coming to America

.

An Introduction to SAS
®
 DATA Step Hash Programming Techniques, continued OhioSUG 2019

Page 3

Method Description

ADD Adds data associated with key to hash object.

CHECK Checks whether key is stored in hash object.

CLEAR Removes all items from a hash object without deleting hash object.

DEFINEDATA Defines data to be stored in hash object.

DEFINEDONE Specifies that all key and data definitions are complete.

DEFINEKEY Defines key variables to the hash object.

DELETE Deletes the hash or hash iterator object.

EQUALS Determines whether two hash objects are equal.

FIND Determines whether the key is stored in the hash object.

FIND_NEXT The current list item in the key’s multiple item list is set to the next item.

FIND_PREV The current list item in the key’s multiple item list is set to the previous item.

FIRST Returns the first value in the hash object.

HAS_NEXT Determines whether another item is available in the current key’s list.

HAS_PREV Determines whether a previous item is available in the current key’s list.

LAST Returns the last value in the hash object.

NEXT Returns the next value in the hash object.

OUTPUT Creates one or more data sets containing the data in the hash object.

PREV Returns the previous value in the hash object.

REF Combines the FIND and ADD methods into a single method call.

REMOVE Removes the data associated with a key from the hash object.

REMOVEDUP Removes the data associated with a key’s current data item from the hash object.

REPLACE Replaces the data associated with a key with new data.

REPLACEDUP Replaces data associated with a key’s current data item with new data.

SETCUR Specifies a starting key item for iteration.

SUM Retrieves a summary value for a given key from the hash table and stores the value to a
DATA step variable.

SUMDUP Retrieves a summary value for the key’s current data item and stores the value to a DATA
step variable.

An Introduction to SAS
®
 DATA Step Hash Programming Techniques, continued OhioSUG 2019

Page 4

Sort with a Simple Key
Sorting is a common task performed by SAS users everywhere. The SORT procedure is frequently used to rearrange the order of
data set observations by the value(s) of one or more character or numeric variables. A feature that PROC SORT is able to do is
replace the original data set or create a new ordered data set with the results of the sort. Using hash programming techniques,
SAS users have an alternative to using the SORT procedure. In the following example, a user-written hash routine is constructed
in the DATA step to perform a simple ascending data set sort. As illustrated, the metadata from the MOVIES data set is loaded
into the hash table, a DefineKey method specifies an ascending sort using the variable LENGTH as the primary (simple) key, a
DefineData method to select the desired variables, an Add method to add data to the hash object, and an Output method to
define the data set to output the results of the sort to.

Hash Code with Simple Key

As illustrated in the following SAS Log results, SAS processing stopped with a data-related error due to one or more duplicate
key values. As a result, the output data set contained fewer results (observations) than expected.

SAS Log Results

Libname mydata ‘e:\workshops\workshop data’ ;

data _null_;

 if 0 then set mydata.movies; /* load variable properties into hash tables */

 if _n_ = 1 then do;

 declare Hash HashSort (ordered:’a'); /* declare the sort order for hash */

 HashSort.DefineKey (‘Length'); /* identify variable to use as simple key */

 HashSort.DefineData (‘Title‘,

 ‘Length’,

 ‘Category’,

 ‘Rating’); /* identify columns of data */

 HashSort.DefineDone (); /* complete hash table definition */

 end;

 set mydata.movies end=eof;

 HashSort.add (); /* add data with key to hash object */

 if eof then HashSort.output(dataset:sorted_movies); /* write data using hash

 HashSort */

run;

Libname mydata ‘e:\workshops\workshop data’ ;

data _null_;

 if 0 then set mydata.movies; /* load variable properties into hash tables */

 if _n_ = 1 then do;

 declare Hash HashSort (ordered:'a'); /* declare the sort order for hash */

 HashSort.DefineKey ('Length'); /* identify variable to use as simple key */

 HashSort.DefineData ('Title',

 'Length',

 'Category',

 'Rating'); /* identify columns of data */

 HashSort.DefineDone (); /* complete hash table definition */

 end;

An Introduction to SAS
®
 DATA Step Hash Programming Techniques, continued OhioSUG 2019

Page 5

SAS Log Results (Continued)

Sort with a Composite Key
To resolve the error presented in the previous example, an improved and more uniquely defined key is specified. The simplest
way to prevent a conflict consisting of duplicate is to add a secondary variable to the key creating a composite key. The
following code illustrates constructing a composite key with a primary variable (LENGTH) and a secondary variable (TITLE) to
reduce the prospect of producing a duplicate key value from occurring (collision).

Hash Code with Composite Key

SAS Log Results

As shown on the SAS Log results, the creation of the composite key of LENGTH and TITLE is sufficient enough to form a unique
key enabling the sort process to complete successfully with 22 observations read from the MOVIES data set, 22 observations
written to the SORTED_MOVIES data set, and zero conflicts (or collisions).

 set mydata.movies end=eof;

 HashSort.add (); /* add data with key to hash object */

 if eof then HashSort.output(dataset:'sorted_movies'); /* write data using hash

 HashSort */

run;

ERROR: Duplicate key.

NOTE: The data set WORK.SORTED_MOVIES has 21 observations and 4 variables.

NOTE: The SAS System stopped processing this step because of errors.

NOTE: There were 22 observations read from the data set MYDATA.MOVIES.

data _null_;

 if 0 then set mydata.movies; /* load variable properties into hash tables */

 if _n_ = 1 then do;

 declare Hash HashSort (ordered:’a'); /* declare the sort order for HashSort */

 HashSort.DefineKey (‘Length', ‘Title’); /* identify variables to use as

 composite key */

 HashSort.DefineData (‘Title‘,

 ‘Length’,

 ‘Category’,

 ‘Rating’); /* identify columns of data */

 HashSort.DefineDone (); /* complete HashSort table definition */

 end;

 set mydata.movies end=eof;

 HashSort.add (); /* add data with key to HashSort table */

 if eof then HashSort.output(dataset:sorted_movies); /* write data using hash

 HashSort */

run;

An Introduction to SAS
®
 DATA Step Hash Programming Techniques, continued OhioSUG 2019

Page 6

Search and Lookup with a Simple Key
Besides sorting, another essential action frequently performed by users is the process of table lookup or search. The hash
object as implemented in the DATA step provides users with the necessary tools to conduct match-merges (or joins) of two or
more data sets. Data does not have to be sorted or be in a designated sort order before use as it does with the DATA step
merge process. The following code illustrates a hash object with a simple key (TITLE) to merge (or join) the MOVIES and ACTORS
data sets to create a new dataset (MATCH_ON_MOVIE_TITLES) with matched observations.

data _null_;

 if 0 then set mydata.movies; /* load variable properties into hash tables */

 if _n_ = 1 then do;

 declare Hash HashSort (ordered:'a'); /* declare the sort order for HashSort */

 HashSort.DefineKey ('Length', ‘Title’); /* identify variable to use as

 composite key */

 HashSort.DefineData ('Title',

 'Length',

 'Category',

 'Rating'); /* identify columns of data */

 HashSort.DefineDone (); /* complete HashSort table definition */

 end;

 set mydata.movies end=eof;

 HashSort.add (); /* add data using key to HashSort table */

 if eof then HashSort.output(dataset:'sorted_movies'); /* write data using

 HashSort */

run;

NOTE: The data set WORK.SORTED_MOVIES has 22 observations and 4 variables.

NOTE: There were 22 observations read from the data set MYDATA.MOVIES.

data match_on_movie_titles(drop=rc);

 if 0 then set mydata.movies

 mydata.actors; /* load variable properties into hash tables */

 if _n_ = 1 then do;

 declare Hash MatchTitles (dataset:'mydata.actors'); /* declare the name

 MatchTitles for hash */

 MatchTitles.DefineKey ('Title'); /* identify variable to use as key */

 MatchTitles.DefineData (‘Actor_Leading’,

 ‘Actor_Supporting’); /* identify columns of data */

 MatchTitles.DefineDone (); /* complete hash table definition */

 end;

 set mydata.movies;

 if MatchTitles.find(key:title) = 0 then output; /* lookup TITLE in MOVIES table

 using MatchTitles hash */

run;

An Introduction to SAS
®
 DATA Step Hash Programming Techniques, continued OhioSUG 2019

Page 7

Results
The match-merge (or join) process is illustrated using the following diagram.

Transposing with the TRANSPOSE Procedure
In the paper; SAS on a Shingle, Flippin with Hash (2012); Miller and Lafler illustrate two key points: 1) how PROC TRANSPOSE is
used for converting SAS data set structures and 2) how hash programming techniques are used to emulate the PROC
TRANSPOSE process. The objective was to demonstrate the programming techniques and select hash methods that were used
to successfully create a transposed data set. For those unfamiliar or with limited experience using PROC TRANSPOSE, the SAS
Base procedure gives SAS users a convenient way to transpose (or restructure) any SAS data set structure. Popular uses for
PROC TRANSPOSE include:

 Converting the observations of a data set structure to variables, sometimes referred to as changing a vertical (long or
thin) data structure to a horizontal (wide or fat) data structure;

 Converting the variables of a data set structure to observations, sometimes referred to as changing a horizontal (wide

or fat) data structure to a vertical (long or thin) data structure.

Although experienced SAS users may use any number of approaches in lieu of the TRANSPOSE procedure to restructure a data
set, these alternate techniques can require more time for programming, testing and debugging. The PROC TRANSPOSE syntax
to restructure (or transpose) selected variables into observations is shown, below. After sorting the MOVIES data set in
ascending order by TITLE, PROC TRANSPOSE then accesses the sorted MOVIES data set. The BY statement tells PROC
TRANSPOSE to create BY-groups for the variable TITLE. The VAR statement specifies the variables, RATING and LENGTH, to
transpose into observations. The result of the transpose process is then written to a data set called, Transposed_Movies.

Match_on_Movies_Titles

Movies Actors

An Introduction to SAS
®
 DATA Step Hash Programming Techniques, continued OhioSUG 2019

Page 8

PROC TRANSPOSE Code:

The resulting Transposed_Movies data set from running the TRANSPOSE procedure, below, contains three variables: TITLE,
NAME and _COL1. With closer inspection, the data set contains duplicate TITLE values (observations), a distinct _NAME_
value for “Rating” in the first observation of COL1 and a distinct _NAME_ value for “Length” in the second observation of COL1
for each BY-group.

Transposed_Movies Data Set created with PROC TRANSPOSE

libname mydata "e:\workshops\workshop data" ;

proc sort data = mydata.movies

 out = sorted_movies ;

 by title ;

run ;

proc transpose data = sorted_movies

 out = transposed_movies ;

 by title ;

 var rating length ;

run;

An Introduction to SAS
®
 DATA Step Hash Programming Techniques, continued OhioSUG 2019

Page 9

Transposed_Movies Data Set (continued)

Transposed_Movies Data Set created with PROC TRANSPOSE (continued)

Transposing with the DATA Step Hash Method
My objective for using Hash methods in creating a restructured transposed data set is to emulate was is created with the
TRANSPOSE procedure. We’ll begin with the statement, “DATA Hash_Long_Movies”, because the application of Hash methods
is currently only available in a DATA step. The next statement, “IF 0 THEN SET MYDATA.MOVIES” tells SAS to load variable

properties into the hash object located in real memory. The DECLARE HASH statement provide a name to the hash object

being created in memory as ‘Hash_movies’, the name of the input data set, and how the data is ordered. The “DECLARE

HITER” statement defines and initializes the hash object for traversing the object in memory. The DEFINEKEY method

identifies the variable (or variables) to use as the key. The DEFINEDATA method informs SAS what variables to read into the

hash object in memory (in our case all variables not removed with the DROP= (or KEEP=) data set option). The DEFINEDONE

method completes the hash table definition. The FIRST() method tells SAS to return the first value stored in the defined

hash object. The DO WHILE loop iterates repeatedly as long as there is data stored in the hash object. The LINK

OUTLONG statement tells SAS to execute the OUTLONG subroutine. The NEXT() method tells SAS to return the next value
from the defined hash object. The STOP statement tells SAS to terminate the DATA step.

libname mydata ‘e:\workshops\workshop data’ ;

 data hash_long_movies (drop=rc Rating Length) ;

 if 0 then set mydata.movies(keep=Title Rating Length) ;

 if _n_ = 1 then do ;

 declare Hash Hash_movies(dataset:'mydata.movies',

 ordered:'ascending') ;

 declare Hiter Hi_movies ('Hash_movies') ;

 Hash_movies.DefineKey ('Title') ;

 Hash_movies.DefineData (‘Title’, ‘Rating’, ‘Length’) ;

 Hash_movies.DefineDone () ;

 end ;

 rc = Hi_movies.first() ;

 do while (rc = 0) ;

 link outlong ;

 rc = Hi_movies.next() ;

 end;

 stop ;
return ;

An Introduction to SAS
®
 DATA Step Hash Programming Techniques, continued OhioSUG 2019

Page 10

The resulting Hash_Long_Movies data set created with the Hash methods, below, contains three variables: TITLE, LABEL and
VALUE. As with the transposed data set created earlier, this data set contains duplicate TITLEs, a distinct LABLE value for
“Rating” in the first observation of VALUE and for “Length” in the second observation of VALUE for each BY-group.

Hash_Long_Movies Data Set created with Hash Methods

outlong: ;

 Title ;

 Label = 'Rating' ;

 Value = Rating ;

 output hash_long_movies ;

 Title ;

 Label = 'Length' ;

 Value = Length ;

 output hash_long_movies ;

 return ;

 run ;

An Introduction to SAS
®
 DATA Step Hash Programming Techniques, continued OhioSUG 2019

Page 11

Hash_Long_Movies Data Set (continued)

Hash_Long_Movies Data Set created with Hash Methods (continued)

Conclusion
Users have a powerful hash DATA-step construct to sort data, search data sets, perform table lookup operations, and transpose
data sets in the SAS system. This paper introduced the basics of what a hash table is, how it works, the basic syntax, and its
practical applications so SAS users everywhere can begin to take advantage of this powerful memory-based programming
technique to improve the performance of sorts, searches, table lookup operations, and transposes.

References
Dorfman, Paul and Don Henderson (2018). Data Management Solutions Using SAS® Hash Table Operations: A Business

Intelligence Case Study, SAS Institute Inc., Cary, NC, USA.

Dorfman, Paul, and Marina Fridman (2010). "Black Belt Hashigana," Proceedings of the 2010 North East SAS Users Group
(SESUG) Conference.

Dorfman, Paul and Peter Eberhardt (2010). "Two Guys on Hash," Proceedings of the 2010 South East SAS Users Group (SESUG)
Conference.

Dorfman, Paul (2009). "The SAS
®
 Hash Object in Action," Proceedings of the 2009 South East SAS Users Group (SESUG)

Conference.

Dorfman, Paul, Lessia S. Shajenko and Koen Vyverman (2008). "Hash Crash and Beyond," Proceedings of the 2008 SAS Global
Forum (SGF) Conference.

Dorfman, Paul, and Koen Vyverman (2006). "DATA Step Hash Objects as Programming Tools," Proceedings of the Thirty-First
SAS Users Group International Conference.

Eberhardt, Peter (2011). “The SAS
®
 Hash Object: It’s Time to .find() Your Way Around,” Proceedings of the 2011 SAS Global

Forum (SGF) Conference.

Lafler, Kirk Paul (2016). “An Introduction to SAS
®
 Hash Programming Techniques,” Proceedings of the 2016 South East SAS Users

Group (SESUG) Conference.

Lafler, Kirk Paul (2016). “An Introduction to SAS
®
 Hash Programming Techniques,” Proceedings of the 2016 Iowa SAS Users

Group (IASUG) Conference.

Lafler, Kirk Paul (2015). “An Introduction to SAS
®
 Hash Programming Techniques,” Proceedings of the 2015 South Central SAS

Users Group (SCSUG) Conference.

Lafler, Kirk Paul (2011). “An Introduction to SAS
®
 Hash Programming Techniques,” Proceedings of the 2011 South East SAS Users

Group (SESUG) Conference.

Lafler, Kirk Paul (2011). “An Introduction to SAS
®
 Hash Programming Techniques,” Proceedings of the 2011 PharmaSUG

Conference.

Lafler, Kirk Paul (2011). “An Introduction to SAS
®
 Hash Programming Techniques,” San Diego SAS Users Group (SANDS) Meeting,

February 16
th

, 2011.

An Introduction to SAS
®
 DATA Step Hash Programming Techniques, continued OhioSUG 2019

Page 12

Lafler, Kirk Paul (2010). “An Introduction to SAS
®
 Hash Programming Techniques,” Bay Area SAS (BASAS) Users Group Meeting,

December 7
th

, 2010.

Lafler, Kirk Paul (2010). “An Introduction to SAS
®
 Hash Programming Techniques,” Proceedings of the 2010 South Central SAS

Users Group (SCSUG) Conference.

Lafler, Kirk Paul (2010). “An Introduction to SAS
®
 Hash Programming Techniques,” Awarded “Best” Contributed Paper,

Proceedings of the 2010 Western Users of SAS Software (WUSS) Conference.

Lafler, Kirk Paul (2010). “DATA Step and PROC SQL Programming Techniques,” Ohio SAS Users Group (OSUG) One-Day
Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2010). “Exploring Powerful Features in PROC SQL,” SAS Global Forum (SGF) Conference, Software Intelligence
Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2009). “DATA Step and PROC SQL Programming Techniques,” South Central SAS Users Group (SCSUG) 2009
Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2009). “DATA Step versus PROC SQL Programming Techniques,” Sacramento Valley SAS Users Group 2009
Meeting, Software Intelligence Corporation, Spring Valley, CA, USA.

Loren, Judy and Richard A. DeVenezia (2011). "Building Provider Panels: An Application for the Hash of Hashes," Proceedings of
the 2011 SAS Global Forum (SGF) Conference.

Loren, Judy (2006). "How Do I Love Hash Tables? Let Me Count The Ways!," Proceedings of the Nineteenth Northeast SAS Users
Group Conference.

Miller, Ethan and Kirk Paul Lafler (2012), “SAS® on a Shingle, Flippin with Hash,” Proceedings of the 2012 Western Users of SAS
Software (WUSS) Conference Proceedings, SRI International, Menlo Park, CA, and Software Intelligence Corporation, Spring
Valley, CA, USA.

Muriel, Elena (2007). “Hashing Performance Time with Hash Tables,” Proceedings of the 2007 SAS Global Forum (SGF)
Conference.

Parman, Bill (2006). “How to Implement the SAS
®
 DATA Step Hash Object,” Proceedings of the 2006 Southeast SAS Users Group

Conference.

Ray, Robert and Jason Secosky (2008). “Better Hashing in SAS
®
 9.2,” Proceedings of the Second Annual SAS Global Forum (SGF)

Conference, SAS Institute Inc., Cary, NC, USA.

Secosky, Jason (2007). “Getting Started with the DATA Step Hash Object,” Proceedings of the 2007 SAS Global Forum (SGF)
Conference, SAS Institute Inc., Cary, NC, USA.

Acknowledgments

The author thanks Mary MacDougall, Richann Watson, and Chris Aultman for accepting my abstract and paper; and SAS
Institute Inc. and the OhioSUG Executive Committee for organizing a great SAS User Group meeting!

Trademark Citations
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective
companies.

An Introduction to SAS
®
 DATA Step Hash Programming Techniques, continued OhioSUG 2019

Page 13

About The Author
Kirk Paul Lafler is an entrepreneur, consultant and founder at Software Intelligence Corporation, and has been using SAS since
1979. Kirk has worked as a SAS application developer, programmer, certified professional, provider of SAS consulting services,
mentor, advisor and adjunct professor at University of California San Diego Extension, emeritus sasCommunity.org Advisory
Board member, and educator to SAS users around the world. As the author of six books including PROC SQL: Beyond the Basics
Using SAS, Third Edition (SAS Press. 2019) and Google® Search Complete (Odyssey Press. 2014); Kirk has written hundreds of
papers and articles; selected as an Invited speaker, trainer, keynote and section leader at SAS International, regional, special-
interest, local, and in-house user group conferences and meetings; and is the recipient of 25 “Best” contributed paper, hands-
on workshop (HOW), and poster awards.

Comments and suggestions can be sent to:

Kirk Paul Lafler

SAS® Consultant, Application Developer, Programmer, Data Analyst, Educator and Author

Software Intelligence Corporation

E-mail: KirkLafler@cs.com

LinkedIn: http://www.linkedin.com/in/KirkPaulLafler

LinkedIn: https://www.linkedin.com/in/Order-of-Magnitude-Analytics/
Twitter: @sasNerd

https://www.sas.com/store/prodBK_71650_en.html
https://www.sas.com/store/prodBK_71650_en.html
https://www.amazon.com/Google-Search-Complete-Shortcuts-Searches/dp/0692285164/ref=pd_rhf_gw_p_img_8?_encoding=UTF8&psc=1&refRID=AJ9P78M1FQ8RCW38E3YM
http://www.linkedin.com/in/KirkPaulLafler
https://www.linkedin.com/in/Order-of-Magnitude-Analytics/

