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ABSTRACT

Multicollinearity is the phenomenon in which two or more identified predictor variables in a multiple
regression model are highly correlated. The presence of this phenomenon can have a negative impact on
the analysis as a whole and can severely limit the conclusions of the research study. This paper reviews
and provides examples of the different ways in which multicollinearity can affect a research project, how
to detect multicollinearity and how one can reduce it through Ridge Regression applications. This paper is
intended for any level of SAS® user.

INTRODUCTION

Multicollinearity is often described as the statistical phenomenon wherein there exists a perfect or exact
relationship between predictor variables. From a conventional standpoint, this can occur in regression
when several predictors are highly correlated. (As a disclaimer, variables do not need to be highly
correlated for multicollinearity to exist, though this is oftentimes the case.) Another way to think of
collinearity is as a type of variable “co-dependence”.

Why is this important? Well, when things are related, we say that they are linearly dependent. In other
words, they fit well into a straight regression line that passes through many data points. In the incidence
of multicollinearity, it is difficult to come up with reliable estimates of individual coefficients for the
predictor variables in a model which results in incorrect conclusions about the relationship between the
outcome and predictor variables. Therefore, in the consideration of a multiple regression model in which a
series of predictor variables were chosen in order to test their impact on the outcome variable, it is
essential that multicollinearity not be present!

A LINEAR EXAMPLE
Another way to look at this issue is by considering a basic multiple linear regression equation:

y=xB+e
In this equation, y is an nx1 vector of response, X is an nxp matrix of predictor variables, 8 is a px1 vector
of unknown constants, and ¢ is an nx1 vector of random errors with & ~ NID(0,6"2). In a model such as
this, the presence of multicollinearity would inflate the variances of the parameter estimates, leading to a
lack of statistical significance of the individual predictor variables even if the overall model itself remains

significant. Considering this, we can see how the presence of multicollinearity can end up causing serious
problems when estimating and interpreting 8, even in the simplest of equations.

A LIVING EXAMPLE

Why should we care? Consider this example: your company has just undergone a major overhaul and it
was decided that half of the department heads would choose an assistant lead to help with their
workload. The assistant leads were chosen by the identified department heads after a series of rigorous
interviews and discussions with each applicant’s references. It is now time for next year’s budget to be
decided. An administrative meeting is held during which both department heads and their new assistant
leads are present. Keep in mind that only half of the departments have two representatives, whereas the
other half only has one representative per department. It comes time to vote, by show of hands, on a
major budget revision. Both the leads and assistants will be voting. Do you think any of the assistants will
vote against their leads? Probably not. This will end up resulting in a biased vote as the votes of the
assistants would be dependent on the votes of their leads, thus giving favor to the departments with two
representatives. A relationship such as this between two variables in a model could lead to an even more
biased outcome, thus leading to results that have been affected in a detrimental way.

DIFFERENT MODELS, DIFFERENT CIRCUMSTANCES



Collinearity is especially problematic when a model’s purpose is explanation rather than prediction. In the
case of explanation, it is more difficult for a model containing collinear variables to achieve significance of
the different parameters. In the case of prediction, if the estimates end up being statistically significant,
they are still only as reliable as any other variable in the model, and if they are not significant, then the
sum of the coefficients is likely to be reliable. In summary if collinearity is found in a model testing
prediction, then one need only increase the sample size of the model. However, if collinearity is found in a
model seeking to explain, then more intense measures are needed. The primary concern resulting from
multicollinearity is that as the degree of collinearity increases, the regression model estimates of the
coefficients become unstable and the standard errors for the coefficients become wildly inflated.

DETECTING MULTICOLLINEARITY

We will begin by exploring the different diagnostic strategies for detecting multicollinearity in a dataset.
While reviewing this section, the author would like you to think logically about the model being explored.
Try identifying possible multicollinearity issues before reviewing the results of the diagnostic tests.

INTRODUCTION TO THE DATSET

The dataset used for this paper is easily accessible by anyone with access to SAS®. It is a sample
dataset titled “lipids”. The background to this sample dataset states that it is from a study to investigate
the relationships between various factors and heart disease. In order to explore this relationship, blood
lipid screenings were conducted on a group of patients. Three months after the initial screening, follow-up
data was collected from a second screening that included additional information such as gender, age,
weight, total cholesterol, and history of heart disease. The outcome variable of interest in this analysis is
the reduction of cholesterol level between the initial and 3-month lipid panel or “cholesterolloss”. The
predictor variables of interest are age (age of participant), weight (weight at first screening), cholesterol
(total cholesterol at first screening), triglycerides (triglycerides level at first screening), HDL (HDL level at
first screening), LDL (LDL level at first screening), height (height of participant), skinfold (skinfold
measurement), systolicbp (systolic blood pressure) diastolicbp (diastolic blood pressure), exercise
(exercise level), and coffee (coffee consumption in cups per day).

DATA CLEANING AND PREPARATION

As a first step in the examination of our research question — do target health outcome variables contribute
to the amount of cholesterol lost between baseline and a 3 month follow-up — we must first identify which
variables will be used in the analysis, what these variables look like, and how these variables will interact
with each other. In short, we must clean and prepare the data for our analysis. This may seem redundant,
but it is a worthy note to make considering the type of analysis we are about to conduct. We will begin by
identifying the dataset and making sure that it is appropriately imported into the SAS environment. At this
time we will also use the CONTENTS procedure to check the structure and types of variables we will be
working with:

/* Example of Multicollinearity Findings */
libname health
"C:\ProgramFiles\SASHome\SASEnterpriseGuide\7.1\Sample\Data";

data health;
set health.lipid;
run;

proc contents data=health;
title 'Health Dataset with High Multicollinearity';
run;

Next, frequency, means, and univariate procedures were performed in order to explore the descriptive
statistics, skewness, and kurtosis of our target outcome and predictor variables within the dataset and to
identify any possible errors, outliers, and missing information that may exist.



/* Data Cleaning and Exploration of Categorical [String] Variables */
proc freq data= health;

tables alcohol gender heartdisease smoking / chisg;

run;

/* Data Cleaning and Exploration of Continuous [Numeric] Variables */
proc means data= health;

var age weight cholesterol triglycerides hdl 1dl height skinfold
systolicbp diastolicbp exercise coffee cholesterolloss;

run;

proc freq data= health;

tables age weight cholesterol triglycerides hdl 1dl height skinfold
systolicbp diastolicbp exercise coffee cholesterolloss / chisg;
run;

/* Exploration of Skewness and Kurtosis */

proc univariate data= health;

var age weight cholesterol triglycerides hdl 1dl height skinfold
systolicbp diastolicbp exercise coffee cholesterolloss;

probplot age weight cholesterol triglycerides hdl 1dl height skinfold
systolicbp diastolicbp exercise coffee cholesterolloss / normal (mu=est
sigma=est) square;

run;

In the above code, the chisqg option is indicated in the table statement of the FREQ procedure to
receive chi-square test results in the output. In the UNIVARIATE procedure, the normal option is used to
request tests for normality and goodness-of-fit, mu is used to indicate the value of the mean or location
parameter for the normal curve, sigma is used to specify the standard deviation for the normal curve, and
square is used to display a P-P plot in the square format.

If we need to correct for any errors, skewness, kurtosis, or control for missing values, we would complete
those at this time before we construct our final data tables for descriptive and univariate analyses. Once
we have corrected for our errors and missing data, we can then rerun these procedures (minus our
outcome variable) with our corrected values to look at the univariate relationships between our scrubbed
predictor variables.

/* Building of Table 1: Descriptive and Univariate Statistics */
proc freq data=health;

tables (alcohol gender heartdisease smoking) * cholesterolloss;
run;

proc freq data=health;

tables (age weight cholesterol triglycerides hdl 1dl height skinfold
systolicbp diastolicbp exercise coffee) * alcohol / chisqg;

run;

proc freq data=health;

tables (age weight cholesterol triglycerides hdl 1dl height skinfold
systolicbp diastolicbp exercise coffee) * gender / chisg;

run;

proc freq data=health;

tables (age weight cholesterol triglycerides hdl 1dl height skinfold
systolicbp diastolicbp exercise coffee) * heartdisease / chisg;

run;



proc freq data=health;

tables (age weight cholesterol triglycerides hdl 1dl height skinfold
systolicbp diastolicbp exercise coffee) * smoking / chisqg;

run;

proc freq data=health;

tables (age weight cholesterol triglycerides hdl 1dl height skinfold
systolicbp diastolicbp exercise coffee) * cholesterolloss / chisqg;
run;

After we have reviewed these results and obtained a good grasp on the relationships between each of the
variables, we can then run the descriptive and univariate statistics on the predictor variables and the
target outcome variable:

/* Building of Table 2: Descriptive and Univariate Statistics */
proc freq data=health;

tables (age weight cholesterol triglycerides hdl 1dl height skinfold
systolicbp diastolicbp exercise coffee) * cholesterolloss / chisqg;
run;

After another thorough review of these results, we can then run a preliminary multivariable ordinal logistic
regression and linear regression analyses to examine the multiplicative interaction of the chosen
variables. An initial examination of the interactions can be made at this time through the results of the
analysis:

proc logistic data = health;

class alcohol gender heartdisease smoking;

model cholesterolloss = alcohol gender heartdisease smoking / lackfit
rsq;

run;

proc logistic data = health;

model cholesterolloss = age weight cholesterol triglycerides hdl 1dl
height skinfold systolicbp diastolicbp exercise coffee / lackfit rsq;
run;

proc reg data = health;

model cholesterolloss = age weight cholesterol triglycerides hdl 1dl
height skinfold systolicbp diastolicbp exercise coffee;

run;

MULTICOLLINEARITY INVESTIGATION

Now we can begin to explore whether or not our chosen model is suffering the effects of multicollinearity!
Given the analyses we conducted above, could you identify any possible variable interactions that could
be ending in multicollinearity? Here’s a hint: could an increase in exercise help with a decrease in
cholesterol loss? Could overall cholesterol be related to HDL and LDL levels? These are questions we
will be able to answer through our multicollinearity analysis.

Ouir first step is to explore the correlation matrix. We can do this through implementation of the CORR
procedure:

/* Assess Pairwise Correlations of Continuous Variables */

proc corr data=health;

var age weight cholesterol triglycerides hdl 1dl height skinfold
systolicbp diastolicbp exercise coffee cholesterolloss;



title 'Health Predictors

run;

- Examination of Correlation Matrix';

Pretty easy right? Now let’s look at the results:

Age

Weight

Cholesterol

Age
1.00000

95

0.08935
0.3892
95

0.26282
0.0101
95

Triglycerides 0.21167

HDL

LDL

Height

Skinfold

SystolicBP

DiastolicBP

0.0395
95

0.20310
0.0484
95

0.21588
0.0356
95

-0.02080
0.8414
95

0.10625
0.3055
95

0.02384
0.8186
95

-0.06384
0.5388
95

Weight Cholesterol | Triglycerides

0.08935 026282
0.3592 0.0101
95 95
1.00000 -0.02188
0.8333
95 95
-0.02188 1.00000
0.8333
95 95
0.10757 0.40081
0.2994 =.0001
95 95
-0.27555 0.35246
0.0069 0.0005
95 95
0.05743 096170
0.5804 <.0001
95 95
0.69794 -0.07521
<0001 0.4688
95 95
0.07427 0.07588
0.4744 0.4649
95 95
0.15740 -0.04103
01277 0.6930
95 95
0.13627 0.15969
0.1879 0.1221
95 95

021167
0.0395
95

0.10757
0.2994
95

0.40081
<0001
95

1.00000

95

-0.27838
0.0063
95

048304
<0001
95

0.04071
0.6953
95

0.09292
0.3704
95

0.14545
0.1596
95

0.14073
01737
95

Pearson Correlation Coefficients
Prob = [r| under HO: Rho=0
Number of Observations

HDL

0.20310
0.0484
95

-0.27555
0.0069
95

0.35246
0.0005
95

-0.27838
0.0063
95

1.00000

95

0.08340
04217
95

-0.24465
0.0169
95

011116
0.2835
95

-0.06008
0.5630
95

0.02410
0.8167
95

LDL

021588
0.0356
95

0.05743
0.5804
95

0.96170
<.0001
95

0.48904
<.0001
95

0.08340
04217
95

1.00000

95

-0.00777
0.9404
95

0.04547
0.6617
95

-0.03028
0.7708
95

0.16118
01187
95

Height

-0.02080
0.8414
95

0.69794
<.0001
95

-0.07521
0.4688
95

0.04071
0.6953
95

-0.24465
0.0169
95

-0.00777
0.9404
95

1.00000

95

-0.13762
0.1835
95

0.08432
0.4166
95

0.06327
0.56424
95

Skinfold | SystolicBP | DiastolicBP
0.10625 0.02384 -0.06384
0.3055 0.8186 0.5388
95 95 95
0.07427 0.15740 0.13627
0.4744 0.1277 0.1879
95 95 95
0.07588 -0.04103 0.15969
0.4649 0.6930 01221
95 95 95
0.09292 0.14545 0.14073
0.3704 0.1596 01737
95 95 95
011116 -0.06008 0.02410
0.2835 0.5630 0.8167
95 95 95
0.04547 -0.03028 016118
06617 0.7708 01187
95 95 95
-0.13762 0.08432 0.06327
0.1835 0.4166 0.5424
95 95 95
1.00000 -0.09901 -0.03817
0.3398 0.7134
95 95 95
-0.09901 1.00000 0.33476
0.3398 0.0009
95 95 95
-0.03817 0.33476 1.00000
0.7134 0.0009
95 95 95

Figure 1: Pearson Correlation Results

Exercise

-0.12193
0.2392
95

0.03254
0.7542
95

0.01308
0.9001
95

011162
0.2815
95

-0.03085
0.7688
95

0.02672
0.7972
95

0.00521
0.9600
95

-0.26581
0.0092
95

-0.05138
0.6209
95

-0.03647
0.7257
95

Coftee | CholesterolLoss

0.25089
0.0142
95

0.05720
0.5819
95

-0.01187
0.9114
95

-0.00350
0.9731
95

0.10955
0.2906
95

-0.04585
0.6591
95

0.07165
0.4902
95

0.07833
0.4505
95

-0.05048
0.6271
95

0.03308
0.7069
95

0.09914
0.5270
43

-0.24221
0.1176
43

0.40318
0.0073
43

0.11396
0.4669
43

0.19099
0.2199
43

0.37389
0.0135
43

-0.27042
0.0795
43

-0.03538
0.8218
43

-0.07917
0.6138
43

0.13192
0.3991
43

Keep in mind, while reviewing these results we want to check to see if any of the variables included have
a high correlation — about 0.8 or higher — with any other variable. As we can see, upon review of this
correlation matrix, there seems to be some particularly high correlations between a few of the variables.
Some relationships of note would be Cholesterol / LDL (0.96) and Weight / Height (0.70). Next we will
examine multicollinearity through the Variance Inflation Factor, Tolerance, and Collinearity Diagnostics.

This can be done by specifying the vif, tol, and collin options respectively after the model

statement:

proc reg data=health;
model cholesterolloss =

collin;
'Health Predictors - Multicollinearity Investigation of VIF and

title
Tol';
run;

age weight cholesterol triglycerides hdl 1dl
height skinfold systolicbp diastolicbp exercise coffee / vif tol



Parameter Estimates

Parameter Standard Variance
Variable DF Estimate Error | tValue | Pr=[t|| Tolerance Inflation
Intercept 1 5.72484 | 108.12644 0.05 0.9581 . 0
Age 1 -0.67645 2.20644 -0.31 0.7613 0.32637 3.06405
Weight 1 -0.20743  0.27789 -0.75  0.4612 0.32763 3.05224

Cholesterol 1) -182.68577  170.82886 -1.07 | 0.2934  4.326797E-T 2311178
Triglycerides | 1 291187 273231 1.07 02951 0.00034921  2863.60930

HDL 1 182.75031 170.71293 1.07 02929 0.00000516 193966
LDL 1 183.05303 170.82561 1.07 02925 5.113026E-7 19557389
Height 1 -0.18955 1.61295 012 0.9072 0.43551 2.29616
Skinfold 1 -0.07347 | 0.53443 -0.14 | 0.8916 0.77820 1.28502
SystolicBP 1 0.07945 | 0.63738 012 0.9016 0.66694 1.49939
DiastolicBP 1 -0.08111 0.43028 -0.19  0.8518 0.66583 1.50190
Exercise 1 0.05167 | 0.08513 0.94 0.3562 0.77863 1.28430
Coffee 1 3.99259 | 3.68202 1.08 0.2868 0.44392 2.22261

Figure 2: Tolerance and VIF Investigation Results

When considering tolerance, we want to make sure that no values fall below 0.1. In reviewing our results,
we can see several variables — namely cholesterol, triglycerides, HDL, and LDL — had values well below
our 0.1 cutoff value. As for variance inflation, the magic number to look out for is anything above the value
of 10. This finding is echoed in review of the Variance Inflation results, where these same variables reveal
values far larger than our 10 cutoff for this column. Next, we will look at the collinearity diagnostics for an
eigensystem analysis of covariance comparison:

Collinearity Diagnostics

. Proportion of Variation
Condition

Number Eigenvalue Index Intercept Age Weight | Cholesterol Triglycerides HDL LDL Height Skinfold | SystolicBP | DiastolicBP |  Exercise Coffee

1 11.29489 1.00000 000001138 000004637 000006086 1 18985E-10 6589162E-7 2117859E-9 2001E-10 000001048 000096170 000002146 000011281 0.00154 | 0.00092480

2 0.68622  4.05704 0.00000331 0.00000701 0.00001442 1.19889E-10  1.143653E-8 | 2.18204E-10 4.01922E-10  0.00000233 0.00417 ' 0.00000915  0.00000136 0.14262 0.28041
3 047052 4.59952  1.797612E-8 0.00000475 0.00006283 1.43701E-10 0.00007230 6.693999E-9 6.81584E-10 7.934101E-7 0.00922 | 0.00000181  0.00000201 0.35333 0.11353
4 027571 640053 | 0.00007350 000002441 000066563 4 12089E-15 0.00024185 | 6.082316E-5 | 3 70204E-10 000008019 005181 000011487 000038336 017610 0.07292
5 0.14667  8.77543  0.00009651 0.00053911 0.00028359  1.554489E-9 0.00000596 | 7.219312E-6 | 1.834574E-9  0.00014592 0.77592 | 0.00026960 0.00215 0.19373 | 0.00009012
6 0.06145  13.55776 0.00082045 0.00016295 0.02554 ' 4.483083E-8 0.00000217 | 0.00000126 = 6.61196E-8 0.00162 0.01235 0.00304 0.00411 0.00501 | 0.00073618
7 002723 2036502 000093349 0.00170 004781 4.702702E-8 0.00025889 | 000000293 2 §25254E-7 000015520 0.00302 0.00381 0.02703 0.00765 008354
8 0.02089  23.25002  0.00003049 0.04483 0.02385 4.595332E-9 0.00004015 | 0.00000125 | 4.865568E-8  0.00044312 0.00851  0.00011118 0.44175 0.01589 0.00722
9 0.00826  36.97981 0.03667 0.00022313 0.32353 | 7.986649E-9 0.00012325 | 0.00000321 | 1.021936E-7 0.00897 0.00304 0.04829 0.21593 0.07217 0.04171
10 000535 4593079 0.00836 074848 010288 1.801143E-8 0.00013411 | 000000190 | 9 625344E-9 0.02801 001629 0.00809 013539 0.00271 023169

1 0.00195  76.09944 0.07125 0.17866 0.11829  2.005126E-8  5.808795E-8 | 6.652202E-7 2.868043E-8 0.13026 0.00141 0.85602 0.14837  0.00064741 0.16488
12 0.00085064 | 115.23088 0.87069 0.01200 0.27559  5.802692E-9 0.00002858 | 1.490124E-7 | 2.525126E-8 0.70634 0.10713 0.06251 | 0.00076513 0.02725 | 0.00001376
13 9.448677E-9 34574 0.01106 001333 008142 1.00000 099908 099999 1.00000 0.12396 000617 001772 0.02400 0.00133 0.00234

Figure 3: Collinearity Investigation Results

In review of these results, our focus is going to be on the relationship of the eigenvalue column to the
condition index column. If one or more of the eigenvalues are small (close to zero) and the corresponding
condition number large, then we have an indication of multicollinearity. As for our results, we can see a
large deviation in the final three factors, with the eigenvalue landing very close to zero and the condition
index being quite large in comparison.

COMBATING MULTICOLLINEARITY

Is there an easy way to combat multicollinearity? Yes! All you need to do is drop one of your problem
variables, rerun your analysis to test for further multicollinearity, and if none exist, then you are good to
go! Can we always do this? Of course not. There are just some variables, no matter how highly correlated
they are, that we need to keep in the model for the sake of scientific advancement and model
completeness. If you run into a case where dropping a variable is not an option, you are in luck!



REGULARIZATION METHODS

Statistical theory and machine learning have made great strides in creating regularization techniques that
are designed to help generalize models with highly complex relationships (such as multicollinearity). In its
most simplistic form, regularization adds a penalty to model parameters (all except intercepts) so the
model generalizes the data instead of overfitting (a side effect of multicollinearity).

There are two main types of regularization: L1 (Lasso Regression) and L2 (Ridge Regression). The key
difference between these two types of regularization can be found in how they handle the penalty.
Through Ridge regression, a squared magnitude of the coefficient is added as the penalty term to the loss
function. Take the following cost function as an example:

n p 2 p
ES(K-Eszﬁﬂ +‘Azgl¥
i=1 j=1 j=1

Considering the above equation, if lambda (A - the penalty) is zero then the equation will go back to
ordinary least squares estimations, whereas a very large lambda would add too much weight to the model
which will lead to under-fitting. Considering this, it is worthy to note the necessity in making sure we have
reviewed exactly how lambda is chosen, as this could help avoid this issue of over-fitting.

Through Lasso Regression (Least Absolute Shrinkage and Selection Operator), the absolute value of
magnitude of the coefficient is added as the penalty term to the loss function. As before, let us take the
following cost function into consideration:

n 2 p
> —ixi,-ﬁ,-) + £ 16|
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Considering the above equation like before, if lambda (A - the penalty) is zero then the equation will again
go back to ordinary least squares estimations, whereas a very large lambda would make the coefficients
approach zero, thus resulting in an under-fit model like before.

The key difference between these two techniques lies in the fact that Lasso is intended to shrink the
coefficient of the less important variables to zero, thus removing some of these features altogether, which
works well if feature selection is the goal of a particular model trimming technique. However, if the
correction of multicollinearity is your goal, then Lasso (L1 regulation) isn’t the way to go.

Therefore, L2 regulation techniques become our method of choice. Ridge Regression is a relatively
simple process that can be employed to help correct for incidents of multicollinearity where the
subtraction of a variable is not an option and feature selection is not a concern.

RIDGE REGRESSION FOR LINEAR MODELS

Ridge regression is a variant of least squares regression and is oftentimes used when multicollinearity
cases are identified. The traditional ordinary least squares (OLS) regression produces unbiased
estimates for the regression coefficients, however, if you introduce the confounding issue of highly
correlated explanatory variables, your resulting OLS parameter estimates end up with large variance (as
discussed earlier). Therefore, it could be beneficial to utilize a technique such as ridge regression in order
to ensure a smaller variance in resulting parameter estimates. The following code details a ridge
regression application:

/* Ridge Regression Example */

proc reg data=health outvif plots(only)=ridge (unpack VIFaxis=1log)
outest=rrhealth ridge=0 to 0.10 by .002;

model cholesterolloss = age weight cholesterol triglycerides hdl 1dl
height skinfold systolicbp diastolicbp exercise coffee;

plot / ridgeplot nomodel nostat;



title 'Health - Ridge Regression Calculation';
run;

proc print data=rrhealth;
title 'Health - Ridge Regression Results';
run;

The ridge= option requests the ridge regression technique in the REG procedure, the outvif option is
indicated to ouput= the variance inflation factors, and the outset option displays the data table with our
results. For this study, we also wanted to look at each of the individual plots for ridge traces and VIF
traces, so the unpack suboption of the plots (only)=ridge option is designated. The plot statement
is designated to display scatter plots of the y and x variables, ridgeplot to request the ridge trace for
ridge regression, nomodel to suppress the display of the fitted model and lable, and the nostat
suppresses the display of the default statistics.

The results produced by this procedure can be seen below:
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Figure 4. Ridge Trace Results
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Health - Ridge Regression Results

Obs _MODEL_| _TYPE_ | _DEPVAR_ _RIDGE_ _PCOMIT_| _RMSE_ | Intercept Age Weight Cholesterol | Triglycerides HDL LDL Height | Skinfold | SystolicBP | DiastolicBP Exe
1 MODEL1 | PARMS CholesterolLoss B _| 271752 57248 -067645 -0.20743 -182 69 29 18275 183.06 -0.18955 -0.07347 0.07945 -0.08111 0C
2 MODEL1 RIDGEVIF | CholesterolLoss 0.000 B B 3.06405 3.05224 231117832 2863 61 19396571 1955789.11 229616 1.28502 1.49939 150190 12
3 MODEL1 RIDGE CholesterolLoss 0.000 o 21782 57248 -0.67645 -0.20743 -182.69 291 182.75 183.05 -0.18955 -0.07347 0.07945 -0.08111 0
4 MODEL1 RIDGEVIF | CholesterolLoss 0.002 . . 295765 274482 053 285 217 094 198441 126699 1.45826 145013 12
5 MODEL1 RIDGE CholesterolLoss 0.002 .| 27.6892 18.0400 -0.93560 -0.12267 015 -0.01 0.04 022 -0.79704  -0.02847 0.16709 -0.00780 0
6 MODEL1 |RIDGEVIF | CholesterolLoss 0.004 . . 289451 268813 051 251 213 091 195803 125712 1.44402 143484 12
7 MODEL1 RIDGE CholesterolLoss 0.004 .| 27.6894 181792 -0.92255 -0.12276 0.16 -0.01 0.03 0.21 -0.79677 -0.02841 0.16401 -0.00583  0.C
8 MODEL1 |RIDGEVIF | CholesterolLoss 0.006 . . .| 283372 263353 0.50 246 209 0.89 1.93237 124746 1.43010 141993 1.2
9 MODEL1 RIDGE CholesterolLoss 0.006 .| 27.6896 18.3156 -0.80977 -0.12284 0.16 -0.01 0.03 0.20 -0.79650 -0.02837 0.16100 -0.00403 0
10 MODEL1 | RIDGEVIF | CholesterollLoss 0.008 . . .| 277514 2.58093 048 242 205 0.87 1.90738 1.23799 1.41648 1406841 12
11 MODEL1 | RIDGE CholesterolLoss 0.008 .| 27.6900 18.4497 -0.89727 -0.12292 0.16 -0.01 0.03 0.20 -0.79623 -0.02833 0.15805 -0.00221 0.

Figure 6: Ridge Regression Results

From these results we want to derive the appropriate ridge parameter or “k” to include in the analysis. The
ridge parameter column is labeled _RIDGE_ and the associated values under each variable column are
the new parameter estimates. There are several schools of thought concerning how to choose the best
value of “k”. | recommend reading Dorugade and Kashid’s 2010 paper for more information on this
matter. The current paper will simply look at the least increase in _RMSE__ and a decrease in ridge
variable inflation factors for each variable. Given that our current range of “k” displayed an immediate
correction (as can be seen visually in our ridge trace and VIF graphs), we will dig down further into the
potential “k” values to find a more specific value for our use:

proc reg data=health outvif plots(only)=ridge (unpack VIFaxis=1log)
outest=rrhealth ridge=0 to 0.002 by .00002;



model cholesterolloss = age weight cholesterol triglycerides hdl 1dl

height skinfold systolicbp diastolicbp exercise coffee;
plot / ridgeplot nomodel nostat;

title 'Health - Ridge Regression Calculation';

run;

proc print data=rrhealth;
title 'Health - Ridge Regression Results';
run;

The results of this more detailed dig are as follows:
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Figure 7: Ridge Trace Results
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Figure 8: Variance Inflation Factors for CholesterolLoss
Obs | _MODEL_ _TYPE_ | DEPVAR_ _RIDGE_ | _PCOMIT_| RMSE_  Intercept Age | Weight Cholesterol | Triglycerides HDL LDL | Height Skinfold | SystolicBP  DiastolicBP
1 MODEL1 PARMS CholesterolLoss R . 271752 57248 -0.67645 | -0.20743 -182.69 29 182.75 183.05 -0.18955 -0.07347 0.07945 -0.08111
2 MODEL1 RIDGEVIF | CholesterolLoss 00000 R R . 306405 3.05224 2311178.32 2863.61 | 193965.71  1955789.11 229616 1.28502 1.49939 1.50190
3 MODEL1 RIDGE CholesterolLoss _00000 . 2717582 57248 -0.67645 | -0.20743 -182.69 29 182.75 183.05 -0.18955 -0.07347 0.07945 -0.08111
4 MODEL1 RIDGEVIF | CholesterolLoss 00002 B B . 3.02258 280317 284.10 295 26.01 24091 2.01129 1.27698 1.47269 1.46568
5 MODEL1 RIDGE CholesterolLoss 00002 . 27.6781 17.7672  -0.94584 | -0.12350 -1.86 0.02 2.04 2.23 -0.79068 -0.02902 0.16921 -0.01051
6 | MODEL1 RIDGEVIF | CholesterolLoss 00004 . . . 302191 2.80255 7220 2.69 8.23 6159 2.01099 1.27688 1.47254 1.46552
7 MODEL1 RIDGE CholesterolLoss 00004 . 276836 178357 -0.94720 | -0.12303 -0.85 0.00 1.04 122 -0.79402 -0.02877 0.16967 -0.01010
8 MODEL1 RIDGEVIF | CholesterolLoss 00006 R R . 302124 280195 3249 264 4.90 2799 2.01071 1.27678 1.47239 1.46536
9 MODEL1 RIDGE CholesterolLoss 00006 . 27.6855 17.8596 -0.94757 | -0.12287 -0.51 -0.00 0.70 0.88 -0.79515 -0.02869 0.16981 -0.00995
10 MODEL1 RIDGEVIF | CholesterolLoss 00008 B B . 3.02057 280134 18.53 2.62 372 16.18 | 2.01043  1.27668 1.47225 1.46520
11 MODEL1 RIDGE CholesterolLoss 00008 . 27.6864 17.8723 -0.94769 | -0.12280 -0.34 -0.00 0.53 0.71 -0.79571 -0.02864 0.16986 -0.00986
12 MODEL1 RIDGEVIF | CholesterolLoss _00010 R R . 301991 280074 12.06 261 318 10.70 | 2.01016 1.27657 147210 1.46504
13 MODEL1 RIDGE CholesterolLoss _00010 . 276870 178805 -0.94771 |-0.12275 -0.24 -0.00 043 061 -0.79604 -0.02862 0.16988 -0.00980
14 MODEL1 RIDGEVIF | CholesterolLoss -00012 R R . 301924 2380014 8.54 261 288 7.72 200988 1.27647 147195 1.46488
15 MODEL1 RIDGE CholesterolLoss .00012 . 27.6874 17.8865 -0.94767 | -0.12272 -0.17 -0.1 0.36 0.54 -0.79627 -0.02860 0.16988 -0.00976

Figure 9: Ridge Regression Results

These results display a more gradual adjustment over several iterations of potential “k” values. Ultimately,
it seems that the ridge parameter of 0.0001 may be our winner, as we see a slight increase in _RMSE _
from 27.1752 to 27.6864 and significant drop in the VIF for each of our problem variables to below our
cutoff of 10. Therefore, this study will choose the ridge parameter of 0.0001 for the resulting parameter
adjustments which are identified in the following code:

proc reg data=health outvif plots(only)=ridge (unpack VIFaxis=logqg)
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outest=rrhealth final ridge=.0001;

model cholesterolloss = age weight cholesterol triglycerides hdl 1dl
height skinfold systolicbp diastolicbp exercise coffee;

plot / ridgeplot nomodel nostat;

title 'Health - Ridge Regression Calculation';

run;

proc print data=rrhealth final;
title 'Health - Ridge Regression Results';
run;

These results can then be used as our final adjusted model with the multicollinearity issue controlled!

Health - Ridge Regression Calculation
Parameter Estimates

The REG Procedure Parameter | Standard

Model: MODEL1 . .
T e e o (o T Variable DF Estimate Error  t Value Pr= [t
Intercept 1 572484 | 108.12644 0.05  0.9581
Number of Observations Read 95 Age 1 1067645 2 20644 031 0.7613
AT GBI 11 1222 4 Weight 1 020743 027789 075 04612

Number of Observations with Missing Values 52 Cholesterol 1| 18268577 | 170.82886 1.07 | 02934

Analysis of Variance Triglycerides 1~ 291187 273231 1.07 | 0.2951

Sum of Mean HDL 1 182.75031 170.71293 1.07 | 0.2929
Source DF Squares Square | F Value  Pr=F LDL 1 183.05303 17082561 107 02925
Model 12 1 9902 91610 82524301 112  0.3828 Height 1 0.18955 1 61295 012 09072

Error 30 22155 | 738.49194
Skinfold 1 -0.07347 053443 -0.14 | 0.8916

Corrected Total = 42 32058

SystolicBP 1 0.07945 0.63738 0.12 | 0.9016
Root MSE 2717521 | R-Square | 0.3089 DiastolicBP 1 -0.08111 0.43028 -0.19 | 0.8518
Dependent Mean 976744 AdjR-Sq | 0.0325 Exercise 1 0.05167 0.05513 0.94 | 0.3562
Coeff Var 27822237 Coffee 1 3.99259 3.68202 1.08 | 0.2868

Figure 10: Ridge Regression Results for Original Model

Obs | _MODEL_ _TYPE_ | _DEPVAR_ _RIDGE_ | _PCOMIT_| _RMSE_  Intercept Age | Weight | Cholesterol
1 MODEL1 PARMS | CholesterolLoss . .| 271782 57248 -0.67645 -0.20743 -182.686
2 MODEL1 | RIDGEVIF | CholesterolLoss 0001 . . .0 3.01991 2.80074 12.058
3 MODEL1 RIDGE CholesterolLoss 0001 . 276870 17.8805 -0.94771 -0.1227% -0.238

Figure 11: Adjusted Ridge Regression Results

If we want to see standard errors and parameter estimates for our new model, we can designate outseb
in our model statement when we rerun the model.

proc reg data=health outvif plots(only)=ridge (unpack VIFaxis=logqg)
outest=rrhealth final outseb ridge=.0001;

model cholesterolloss = age weight cholesterol triglycerides hdl 1dl
height skinfold systolicbp diastolicbp exercise coffee;

plot / ridgeplot nomodel nostat;
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title 'Health - Ridge Regression Calculation';
run;

proc print data=rrhealth final;
title 'Health - Ridge Regression Results';

run;

Our results will then look something like this:

Obs | _MODEL_ | _TYPE_ _DEPVAR_ _RIDGE_ | _PCOMIT_ _RMSE_ | Intercept Age | Weight  Cholesterol Triglycerides HDL
1 MODEL1  PARMS CholesterolLoss . . 271752 5.725  -0.67645 -0.20743 -162.686 2.91187  182.750
2  MODEL1 | SEB CholesterolLoss . . 271752 108.126 220644 0.27789 170.829 2.73231 170.713
3  MODEL1 RIDGEVIF | CholesterolLoss .0001 . . . 3.01991 | 2.80074 12.058 261318 3181
4 MODEL1 RIDGE CholesterolLoss .0001 . 276870 17.881 -0.94771 -0.12275 -0.238 -0.00494 0428
5 MODEL1 RIDGESEB  CholesterolLoss .0001 . 276870 109531 223174 02711 0.398 0.08409 | 0.704

Figure 12: Ridge Regression Results With Outseb

The SEB and RIDGESEB rows (_ TYPE_ column) gives us the standard errors and parameter estimates
of our original and adjusted models respectively.

CONCLUSION

Multicollinearity, if left untouched, can have a detrimental impact on the generalizability and accuracy of
your model. If multicollinearity exists the traditional ordinary least squares estimators are imprecisely
estimated, which leads to this inaccuracy in your judgment as to how each predictor variable impacts your
target outcome variable. Given this information it is essential to detect and solve the issue of
multicollinearity before estimating the parameters based on a fitted regression model.

Detecting multicollinearity is a fairly simple procedure involving the employment of VIF, tol, and collin
model options. The CORR procedure is also useful in multicollinearity detection. After discovering the
existence of multicollinearity, you can correct for this through the utilization of several different
regularization and variable reduction techniques. One such way to control for multicollinearity is through
the implementation of Ridge Regression techniques. Through the steps outlined in this paper, one should
be able to not only detect any issue of multicollinearity, but also resolve it in only a few short steps!

FUTURE DIRECTIONS

As is common with many studies, the implementations of Ridge Regression can not be concluded as an
end all for multicollinearity issues. Unfortunately, the trade-off of this technique is that a method such as
ridge regression naturally results in biased estimates. A more thorough review into the assumptions and
specifications of ridge regression would be appropriate if you intend to use this model for explanatory
purposes of highly complex models.

On the other hand, several researchers and data scientists have worked hard to explore the value of
procedures like Elastic Nets to help resolve the L1/L2 debate to multicollinearity correction. There also
exists substantive research into the cause and effect of multicollinearity in studies from fields across the
research spectrum. For every issue that arises, there is a plethora of procedures that could be used to
help control for and correct the effects that an issue such as multicollinearity can have on the integrity of a
model. Given this, the author has included several references and recommended articles for your review
to help further the understanding of all statisticians and programmers as to the effects of multicollinearity
on research models.

REFERENCES AND RECOMMENDED READING

Allison, P. (2012, September 10). When Can You Safely Ignore Multicollinearity? Statistical Horizons.
Retrieved from http://statisticalhorizons.com/multicollinearity

13



Centers for Disease Control and Prevention (CDC). (2004). Methodology of the Youth Risk Behavior
Surveillance System. Atlanta, Georgia: U.S. Department of Health and Human Services, Centers for
Disease Control and Prevention.

Chatterjee, S., Hadi, A.S. and Price, B. (2000). Regression Analysis by Examples. 3rd Edition, Wiley
VCH, New York.

Draper, N. R., and Smith, H. (2003). Applied regression analysis, 3rd edition, Wiley, New York.

Dorugade, A. V., and Kashid, D. N. (2010). Alternative Method for Choosing Ridge Parameter for
Regression. Applied Mathematical Sciences. 4(9): 447-456.

Joshi, H., Kulkarni, H., and Deshpande, S. (2012). Multicollinearity Diagnostics in Statistical Modeling &
Remedies to Deal With it Using SAS. Proceedings from PhUSE 2012. Retrieved from
https://www.lexjansen.com/phuse/2012/sp/SP07.pdf.

Montgomery, D. C., Peck, E. A., and Vining, G. G. (2001). Introduction to linear regression analysis. 3rd
edition, Wiley, New York.

Unknown. (2018). What is Multicollinearity? [Lecture notes]. Retrieved from
https://onlinecourses.science.psu.edu/stat501/node/344

Wicklin, R. (2013, March 20). Understanding Ridge Regression in SAS. Retrieved from
http://blogs.sas.com/content/iml/2013/03/20/compute-ridge-regression.html.

Afshartous, D., & Preston, R. A. (2011). Key Results of Interaction Models With Centering. Journal of
Statistics Education. 19 (3). Retrieved from https://www.amstat.org/publications/jse/v19n3/afshartous.pdf

Dixon, P.M. (1993) The bootstrap and the jackknife: Describing the precision of ecological indices. Design
and Analysis of Ecological Experiments, New York: Chapman & Hall, pp 290-318.

Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap. New York: Chapman & Hall.

Hall, P. (1992). The Bootstrap and Edgeworth Expansion. New York: Springer-Verlag.

Hjorth, J.S.U. (1994) Computer Intensive Statistical Methods. London: Chapman & Hall.

Shao, J. and Tu, D. (1995). The Jackknife and Bootstrap. New York: Springer-Verlag.

Shtatland, E. S., Kleinman, K., Cain, E. M. (2004). A New Strategy of Model Building in PROC LOGISTIC
With Automatic Variable Selection, Validation, Shrinkage and Model Averaging. Conference proceedings
from SAS Users Group International Meeting 2004 (SUGI 29). Montreal, Canada. Retrieved from
http://www2.sas.com/proceedings/sugi29/191-29.pdf

Stine, R. (1990). An introduction to bootstrap methods: Examples and ideas. Sociological Methods &
Research, 18, 243-291.

Unknown. (2010, December 3). Sample 24982: Jackknife and Bootstrap Analyses. Retrieved from
http://support.sas.com/kb/24/982.html#pur

Cross Validated. (2015, November 28). What is elastic net regularization, and how does it solve the
drawbacks of Ridge (L2) and Lasso (L1)? Retrieved from
https://stats.stackexchange.com/questions/184029/what-is-elastic-net-regularization-and-how-does-it-
solve-the-drawbacks-of-ridge/184031#184031

14



van Wieringen, W. N. (2018). Ridge Regression [Lecture notes]. Retrieved from
https://arxiv.org/pdf/1509.09169.pdf

ACKNOWLEDGMENTS
The author would like to thank Dr. Peter Flom for his critique and input on previous iterations of the
author’s multicollinearity exploration which have been incorporated into this paper.
CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:
Deanna N Schreiber-Gregory, MS
Data Analyst / Research Associate
Contractor with Henry M Jackson Foundation for the Advancement of Military Medicine
Department of Internal Medicine

Uniformed Services University of the Health Sciences
E-mail: d.n.schreibergregory@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

15



