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Ridge Regression and Multicollinearity: An In-Depth Review 

Deanna N Schreiber-Gregory, Henry M Jackson Foundation for the Advancement of Military 
Medicine  

ABSTRACT  

Multicollinearity is the phenomenon in which two or more identified predictor variables in a multiple 
regression model are highly correlated. The presence of this phenomenon can have a negative impact on 
the analysis as a whole and can severely limit the conclusions of the research study. This paper reviews 
and provides examples of the different ways in which multicollinearity can affect a research project, how 
to detect multicollinearity and how one can reduce it through Ridge Regression applications. This paper is 
intended for any level of SAS® user. 

INTRODUCTION  

Multicollinearity is often described as the statistical phenomenon wherein there exists a perfect or exact 
relationship between predictor variables. From a conventional standpoint, this can occur in regression 
when several predictors are highly correlated. (As a disclaimer, variables do not need to be highly 
correlated for multicollinearity to exist, though this is oftentimes the case.) Another way to think of 
collinearity is as a type of variable “co-dependence”. 

Why is this important? Well, when things are related, we say that they are linearly dependent. In other 
words, they fit well into a straight regression line that passes through many data points. In the incidence 
of multicollinearity, it is difficult to come up with reliable estimates of individual coefficients for the 
predictor variables in a model which results in incorrect conclusions about the relationship between the 
outcome and predictor variables. Therefore, in the consideration of a multiple regression model in which a 
series of predictor variables were chosen in order to test their impact on the outcome variable, it is 
essential that multicollinearity not be present! 

A LINEAR EXAMPLE 

Another way to look at this issue is by considering a basic multiple linear regression equation: 

y = xβ + ε 

In this equation, y is an nx1 vector of response, x is an nxp matrix of predictor variables, β is a px1 vector 
of unknown constants, and ε is an nx1 vector of random errors with εi ~ NID(0,σ^2). In a model such as 
this, the presence of multicollinearity would inflate the variances of the parameter estimates, leading to a 
lack of statistical significance of the individual predictor variables even if the overall model itself remains 
significant. Considering this, we can see how the presence of multicollinearity can end up causing serious 
problems when estimating and interpreting β, even in the simplest of equations. 

A LIVING EXAMPLE 

Why should we care? Consider this example: your company has just undergone a major overhaul and it 
was decided that half of the department heads would choose an assistant lead to help with their 
workload. The assistant leads were chosen by the identified department heads after a series of rigorous 
interviews and discussions with each applicant’s references. It is now time for next year’s budget to be 
decided. An administrative meeting is held during which both department heads and their new assistant 
leads are present. Keep in mind that only half of the departments have two representatives, whereas the 
other half only has one representative per department. It comes time to vote, by show of hands, on a 
major budget revision. Both the leads and assistants will be voting. Do you think any of the assistants will 
vote against their leads? Probably not. This will end up resulting in a biased vote as the votes of the 
assistants would be dependent on the votes of their leads, thus giving favor to the departments with two 
representatives. A relationship such as this between two variables in a model could lead to an even more 
biased outcome, thus leading to results that have been affected in a detrimental way. 

DIFFERENT MODELS, DIFFERENT CIRCUMSTANCES 
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Collinearity is especially problematic when a model’s purpose is explanation rather than prediction. In the 
case of explanation, it is more difficult for a model containing collinear variables to achieve significance of 
the different parameters. In the case of prediction, if the estimates end up being statistically significant, 
they are still only as reliable as any other variable in the model, and if they are not significant, then the 
sum of the coefficients is likely to be reliable. In summary if collinearity is found in a model testing 
prediction, then one need only increase the sample size of the model. However, if collinearity is found in a 
model seeking to explain, then more intense measures are needed. The primary concern resulting from 
multicollinearity is that as the degree of collinearity increases, the regression model estimates of the 
coefficients become unstable and the standard errors for the coefficients become wildly inflated. 

DETECTING MULTICOLLINEARITY 

We will begin by exploring the different diagnostic strategies for detecting multicollinearity in a dataset. 
While reviewing this section, the author would like you to think logically about the model being explored. 
Try identifying possible multicollinearity issues before reviewing the results of the diagnostic tests. 

INTRODUCTION TO THE DATSET 

The dataset used for this paper is easily accessible by anyone with access to SAS®. It is a sample 
dataset titled “lipids”. The background to this sample dataset states that it is from a study to investigate 
the relationships between various factors and heart disease. In order to explore this relationship, blood 
lipid screenings were conducted on a group of patients. Three months after the initial screening, follow-up 
data was collected from a second screening that included additional information such as gender, age, 
weight, total cholesterol, and history of heart disease. The outcome variable of interest in this analysis is 
the reduction of cholesterol level between the initial and 3-month lipid panel or “cholesterolloss”. The 
predictor variables of interest are age (age of participant), weight (weight at first screening), cholesterol 
(total cholesterol at first screening), triglycerides (triglycerides level at first screening), HDL (HDL level at 
first screening), LDL (LDL level at first screening), height (height of participant), skinfold (skinfold 
measurement), systolicbp (systolic blood pressure) diastolicbp (diastolic blood pressure), exercise 
(exercise level), and coffee (coffee consumption in cups per day). 
 

DATA CLEANING AND PREPARATION 

As a first step in the examination of our research question – do target health outcome variables contribute 
to the amount of cholesterol lost between baseline and a 3 month follow-up – we must first identify which 
variables will be used in the analysis, what these variables look like, and how these variables will interact 
with each other. In short, we must clean and prepare the data for our analysis. This may seem redundant, 
but it is a worthy note to make considering the type of analysis we are about to conduct. We will begin by 
identifying the dataset and making sure that it is appropriately imported into the SAS environment. At this 
time we will also use the CONTENTS procedure to check the structure and types of variables we will be 
working with: 
 

/* Example of Multicollinearity Findings */  

libname health 

"C:\ProgramFiles\SASHome\SASEnterpriseGuide\7.1\Sample\Data";  

 

data health;  

set health.lipid;  

run;  

 

proc contents data=health;  

title 'Health Dataset with High Multicollinearity';  

run; 

 

Next, frequency, means, and univariate procedures were performed in order to explore the descriptive 
statistics, skewness, and kurtosis of our target outcome and predictor variables within the dataset and to 
identify any possible errors, outliers, and missing information that may exist. 
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/* Data Cleaning and Exploration of Categorical [String] Variables */  

proc freq data= health;  

tables alcohol gender heartdisease smoking / chisq;  

run; 

 

/* Data Cleaning and Exploration of Continuous [Numeric] Variables */  

proc means data= health;  

var age weight cholesterol triglycerides hdl ldl height skinfold 

systolicbp diastolicbp exercise coffee cholesterolloss; 

run; 

 

proc freq data= health;  

tables age weight cholesterol triglycerides hdl ldl height skinfold 

systolicbp diastolicbp exercise coffee cholesterolloss / chisq;  

run; 

 

/* Exploration of Skewness and Kurtosis */  

proc univariate data= health;  

var age weight cholesterol triglycerides hdl ldl height skinfold 

systolicbp diastolicbp exercise coffee cholesterolloss; 

probplot age weight cholesterol triglycerides hdl ldl height skinfold 

systolicbp diastolicbp exercise coffee cholesterolloss / normal (mu=est 

sigma=est) square; 

run; 

 

In the above code, the chisq option is indicated in the table statement of the FREQ procedure to 

receive chi-square test results in the output. In the UNIVARIATE procedure, the normal option is used to 

request tests for normality and goodness-of-fit, mu is used to indicate the value of the mean or location 

parameter for the normal curve, sigma is used to specify the standard deviation for the normal curve, and 

square is used to display a P-P plot in the square format. 
 

If we need to correct for any errors, skewness, kurtosis, or control for missing values, we would complete 
those at this time before we construct our final data tables for descriptive and univariate analyses. Once 
we have corrected for our errors and missing data, we can then rerun these procedures (minus our 
outcome variable) with our corrected values to look at the univariate relationships between our scrubbed 
predictor variables. 
 

/* Building of Table 1: Descriptive and Univariate Statistics */  

proc freq data=health; 

tables (alcohol gender heartdisease smoking) * cholesterolloss; 

run; 

 

proc freq data=health; 

tables (age weight cholesterol triglycerides hdl ldl height skinfold 

systolicbp diastolicbp exercise coffee) * alcohol / chisq; 

run; 

 

proc freq data=health; 

tables (age weight cholesterol triglycerides hdl ldl height skinfold 

systolicbp diastolicbp exercise coffee) * gender / chisq; 

run; 

 

proc freq data=health; 

tables (age weight cholesterol triglycerides hdl ldl height skinfold 

systolicbp diastolicbp exercise coffee) * heartdisease / chisq; 

run; 
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proc freq data=health; 

tables (age weight cholesterol triglycerides hdl ldl height skinfold 

systolicbp diastolicbp exercise coffee) * smoking / chisq; 

run; 

 

proc freq data=health; 

tables (age weight cholesterol triglycerides hdl ldl height skinfold 

systolicbp diastolicbp exercise coffee) * cholesterolloss / chisq; 

run;  

 

After we have reviewed these results and obtained a good grasp on the relationships between each of the 
variables, we can then run the descriptive and univariate statistics on the predictor variables and the 
target outcome variable:  
 

/* Building of Table 2: Descriptive and Univariate Statistics */  

proc freq data=health;  

tables (age weight cholesterol triglycerides hdl ldl height skinfold 

systolicbp diastolicbp exercise coffee) * cholesterolloss / chisq;  

run;  

 

After another thorough review of these results, we can then run a preliminary multivariable ordinal logistic 
regression and linear regression analyses to examine the multiplicative interaction of the chosen 
variables. An initial examination of the interactions can be made at this time through the results of the 
analysis:  
 

proc logistic data = health;  

class alcohol gender heartdisease smoking; 

model cholesterolloss = alcohol gender heartdisease smoking / lackfit 

rsq;  

run;  

 

proc logistic data = health;  

model cholesterolloss = age weight cholesterol triglycerides hdl ldl 

height skinfold systolicbp diastolicbp exercise coffee / lackfit rsq;  

run;  

 

proc reg data = health;  

model cholesterolloss = age weight cholesterol triglycerides hdl ldl 

height skinfold systolicbp diastolicbp exercise coffee;  

run;  

MULTICOLLINEARITY INVESTIGATION  

Now we can begin to explore whether or not our chosen model is suffering the effects of multicollinearity! 
Given the analyses we conducted above, could you identify any possible variable interactions that could 
be ending in multicollinearity? Here’s a hint: could an increase in exercise help with a decrease in 
cholesterol loss? Could overall cholesterol be related to HDL and LDL levels? These are questions we 
will be able to answer through our multicollinearity analysis. 

Our first step is to explore the correlation matrix. We can do this through implementation of the CORR 
procedure:  

/* Assess Pairwise Correlations of Continuous Variables */  

proc corr data=health;  

var age weight cholesterol triglycerides hdl ldl height skinfold 

systolicbp diastolicbp exercise coffee cholesterolloss;  
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title 'Health Predictors - Examination of Correlation Matrix';  

run;  

Pretty easy right? Now let’s look at the results:  

 

Figure 1: Pearson Correlation Results 

Keep in mind, while reviewing these results we want to check to see if any of the variables included have 
a high correlation – about 0.8 or higher – with any other variable. As we can see, upon review of this 
correlation matrix, there seems to be some particularly high correlations between a few of the variables. 
Some relationships of note would be Cholesterol / LDL (0.96) and Weight / Height (0.70). Next we will 
examine multicollinearity through the Variance Inflation Factor, Tolerance, and Collinearity Diagnostics. 

This can be done by specifying the vif, tol, and collin options respectively after the model 

statement: 

proc reg data=health;  

model cholesterolloss = age weight cholesterol triglycerides hdl ldl 

height skinfold systolicbp diastolicbp exercise coffee / vif tol 

collin;  

title 'Health Predictors - Multicollinearity Investigation of VIF and 

Tol';  

run; 
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Figure 2: Tolerance and VIF Investigation Results 

When considering tolerance, we want to make sure that no values fall below 0.1.  In reviewing our results, 
we can see several variables – namely cholesterol, triglycerides, HDL, and LDL – had values well below 
our 0.1 cutoff value. As for variance inflation, the magic number to look out for is anything above the value 
of 10. This finding is echoed in review of the Variance Inflation results, where these same variables reveal 
values far larger than our 10 cutoff for this column. Next, we will look at the collinearity diagnostics for an 
eigensystem analysis of covariance comparison: 

 

Figure 3: Collinearity Investigation Results 

In review of these results, our focus is going to be on the relationship of the eigenvalue column to the 
condition index column. If one or more of the eigenvalues are small (close to zero) and the corresponding 
condition number large, then we have an indication of multicollinearity. As for our results, we can see a 
large deviation in the final three factors, with the eigenvalue landing very close to zero and the condition 
index being quite large in comparison. 

COMBATING MULTICOLLINEARITY 

Is there an easy way to combat multicollinearity? Yes! All you need to do is drop one of your problem 
variables, rerun your analysis to test for further multicollinearity, and if none exist, then you are good to 
go! Can we always do this? Of course not. There are just some variables, no matter how highly correlated 
they are, that we need to keep in the model for the sake of scientific advancement and model 
completeness. If you run into a case where dropping a variable is not an option, you are in luck!  
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REGULARIZATION METHODS 

Statistical theory and machine learning have made great strides in creating regularization techniques that 
are designed to help generalize models with highly complex relationships (such as multicollinearity). In its 
most simplistic form, regularization adds a penalty to model parameters (all except intercepts) so the 
model generalizes the data instead of overfitting (a side effect of multicollinearity).  

There are two main types of regularization: L1 (Lasso Regression) and L2 (Ridge Regression). The key 
difference between these two types of regularization can be found in how they handle the penalty. 
Through Ridge regression, a squared magnitude of the coefficient is added as the penalty term to the loss 
function. Take the following cost function as an example: 

∑(𝑌𝑖 − ∑ 𝑋𝑖𝑗𝛽𝑗)

𝑝

𝑗=1

𝑛

𝑖=1

2

+  ʎ ∑ 𝜷𝒋
𝟐

𝒑

𝒋=𝟏

 

Considering the above equation, if lambda (ʎ - the penalty) is zero then the equation will go back to 
ordinary least squares estimations, whereas a very large lambda would add too much weight to the model 
which will lead to under-fitting. Considering this, it is worthy to note the necessity in making sure we have 
reviewed exactly how lambda is chosen, as this could help avoid this issue of over-fitting. 

Through Lasso Regression (Least Absolute Shrinkage and Selection Operator), the absolute value of 
magnitude of the coefficient is added as the penalty term to the loss function. As before, let us take the 
following cost function into consideration: 

∑(𝑌𝑖 − ∑ 𝑋𝑖𝑗𝛽𝑗)

𝑝

𝑗=1

𝑛

𝑖=1

2

+  ʎ ∑ |𝜷𝒋|

𝒑

𝒋=𝟏

 

 

Considering the above equation like before, if lambda (ʎ - the penalty) is zero then the equation will again 
go back to ordinary least squares estimations, whereas a very large lambda would make the coefficients 
approach zero, thus resulting in an under-fit model like before. 

The key difference between these two techniques lies in the fact that Lasso is intended to shrink the 
coefficient of the less important variables to zero, thus removing some of these features altogether, which 
works well if feature selection is the goal of a particular model trimming technique. However, if the 
correction of multicollinearity is your goal, then Lasso (L1 regulation) isn’t the way to go. 

Therefore, L2 regulation techniques become our method of choice. Ridge Regression is a relatively 
simple process that can be employed to help correct for incidents of multicollinearity where the 
subtraction of a variable is not an option and feature selection is not a concern.  

RIDGE REGRESSION FOR LINEAR MODELS  

Ridge regression is a variant of least squares regression and is oftentimes used when multicollinearity 
cases are identified. The traditional ordinary least squares (OLS) regression produces unbiased 
estimates for the regression coefficients, however, if you introduce the confounding issue of highly 
correlated explanatory variables, your resulting OLS parameter estimates end up with large variance (as 
discussed earlier). Therefore, it could be beneficial to utilize a technique such as ridge regression in order 
to ensure a smaller variance in resulting parameter estimates. The following code details a ridge 
regression application:  
 

/* Ridge Regression Example */  

proc reg data=health outvif plots(only)=ridge(unpack VIFaxis=log)  

outest=rrhealth ridge=0 to 0.10 by .002;  

model cholesterolloss = age weight cholesterol triglycerides hdl ldl 

height skinfold systolicbp diastolicbp exercise coffee;  

plot / ridgeplot nomodel nostat;  
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title 'Health - Ridge Regression Calculation';  

run;  

 

proc print data=rrhealth;  

title 'Health - Ridge Regression Results';  

run;  

The ridge= option requests the ridge regression technique in the REG procedure, the outvif option is 

indicated to ouput= the variance inflation factors, and the outset option displays the data table with our 

results. For this study, we also wanted to look at each of the individual plots for ridge traces and VIF 

traces, so the unpack suboption of the plots(only)=ridge option is designated. The plot statement 

is designated to display scatter plots of the y and x variables, ridgeplot to request the ridge trace for 

ridge regression, nomodel to suppress the display of the fitted model and lable, and the nostat 

suppresses the display of the default statistics.  

The results produced by this procedure can be seen below: 

 

Figure 4: Ridge Trace Results 
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Figure 5: Variance Inflation Factors for CholesterolLoss 

 

Figure 6: Ridge Regression Results 

From these results we want to derive the appropriate ridge parameter or “k” to include in the analysis. The 
ridge parameter column is labeled _RIDGE_ and the associated values under each variable column are 
the new parameter estimates. There are several schools of thought concerning how to choose the best 
value of “k”. I recommend reading Dorugade and Kashid’s 2010 paper for more information on this 
matter. The current paper will simply look at the least increase in _RMSE_ and a decrease in ridge 
variable inflation factors for each variable. Given that our current range of “k” displayed an immediate 
correction (as can be seen visually in our ridge trace and VIF graphs), we will dig down further into the 
potential “k” values to find a more specific value for our use: 
 

proc reg data=health outvif plots(only)=ridge(unpack VIFaxis=log)  

outest=rrhealth ridge=0 to 0.002 by .00002;  
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model cholesterolloss = age weight cholesterol triglycerides hdl ldl 

height skinfold systolicbp diastolicbp exercise coffee;  

plot / ridgeplot nomodel nostat;  

title 'Health - Ridge Regression Calculation';  

run;  

 

proc print data=rrhealth;  

title 'Health - Ridge Regression Results';  

run;  

 
The results of this more detailed dig are as follows:  
 

 

Figure 7: Ridge Trace Results 
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Figure 8: Variance Inflation Factors for CholesterolLoss 

 

 

Figure 9: Ridge Regression Results 

These results display a more gradual adjustment over several iterations of potential “k” values. Ultimately, 
it seems that the ridge parameter of 0.0001 may be our winner, as we see a slight increase in _RMSE_ 
from 27.1752 to 27.6864 and significant drop in the VIF for each of our problem variables to below our 
cutoff of 10. Therefore, this study will choose the ridge parameter of 0.0001 for the resulting parameter 
adjustments which are identified in the following code:  
 

proc reg data=health outvif plots(only)=ridge(unpack VIFaxis=log)  
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outest=rrhealth_final ridge=.0001;  

model cholesterolloss = age weight cholesterol triglycerides hdl ldl 

height skinfold systolicbp diastolicbp exercise coffee;  

plot / ridgeplot nomodel nostat;  

title 'Health - Ridge Regression Calculation';  

run;  

 

proc print data=rrhealth_final;  

title 'Health - Ridge Regression Results';  

run;  

 
These results can then be used as our final adjusted model with the multicollinearity issue controlled! 
 

 

Figure 10: Ridge Regression Results for Original Model 

 

 

Figure 11: Adjusted Ridge Regression Results 

 

If we want to see standard errors and parameter estimates for our new model, we can designate outseb 

in our model statement when we rerun the model.  

 

proc reg data=health outvif plots(only)=ridge(unpack VIFaxis=log)  

outest=rrhealth_final outseb ridge=.0001;  

model cholesterolloss = age weight cholesterol triglycerides hdl ldl 

height skinfold systolicbp diastolicbp exercise coffee;  

plot / ridgeplot nomodel nostat;  
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title 'Health - Ridge Regression Calculation';  

run;  

 

proc print data=rrhealth_final;  

title 'Health - Ridge Regression Results';  

run;  

 

Our results will then look something like this: 

 

Figure 12: Ridge Regression Results With Outseb 

The SEB and RIDGESEB rows (_TYPE_ column) gives us the standard errors and parameter estimates 
of our original and adjusted models respectively.  

CONCLUSION 

Multicollinearity, if left untouched, can have a detrimental impact on the generalizability and accuracy of 
your model. If multicollinearity exists the traditional ordinary least squares estimators are imprecisely 
estimated, which leads to this inaccuracy in your judgment as to how each predictor variable impacts your 
target outcome variable. Given this information it is essential to detect and solve the issue of 
multicollinearity before estimating the parameters based on a fitted regression model. 

Detecting multicollinearity is a fairly simple procedure involving the employment of VIF, tol, and collin 

model options. The CORR procedure is also useful in multicollinearity detection. After discovering the 
existence of multicollinearity, you can correct for this through the utilization of several different 
regularization and variable reduction techniques. One such way to control for multicollinearity is through 
the implementation of Ridge Regression techniques. Through the steps outlined in this paper, one should 
be able to not only detect any issue of multicollinearity, but also resolve it in only a few short steps!  

FUTURE DIRECTIONS 

As is common with many studies, the implementations of Ridge Regression can not be concluded as an 
end all for multicollinearity issues. Unfortunately, the trade-off of this technique is that a method such as 
ridge regression naturally results in biased estimates. A more thorough review into the assumptions and 
specifications of ridge regression would be appropriate if you intend to use this model for explanatory 
purposes of highly complex models.  

On the other hand, several researchers and data scientists have worked hard to explore the value of 
procedures like Elastic Nets to help resolve the L1/L2 debate to multicollinearity correction. There also 
exists substantive research into the cause and effect of multicollinearity in studies from fields across the 
research spectrum. For every issue that arises, there is a plethora of procedures that could be used to 
help control for and correct the effects that an issue such as multicollinearity can have on the integrity of a 
model. Given this, the author has included several references and recommended articles for your review 
to help further the understanding of all statisticians and programmers as to the effects of multicollinearity 
on research models.  
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